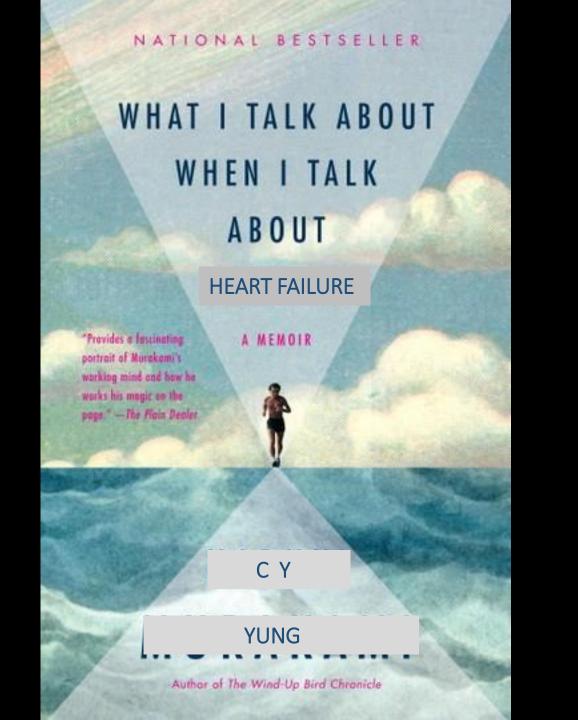

Overview of Heart Failure Classification, aetiologies, assessments and biomarkers

Dr Yung Chi Yui Ruttonjee Hospital



NATIONAL BESTSELLER

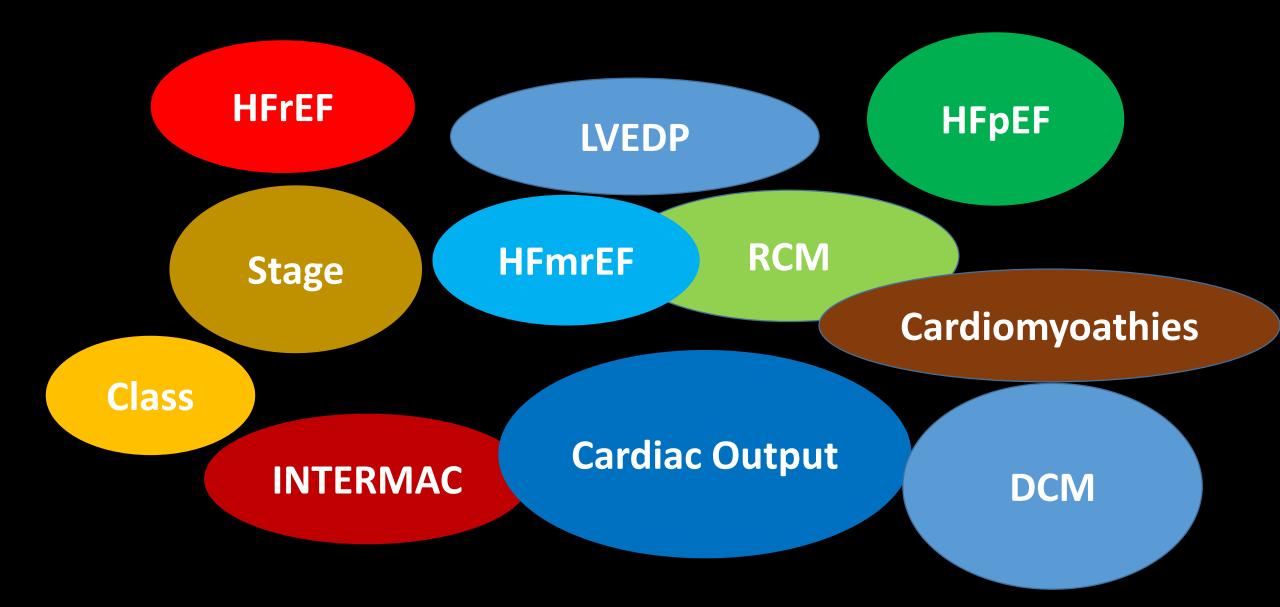
"Provides a fuscinating portrait of Marakami's working mind and how he works his magic on the page." —The Flain Dealer A MEMOIR

HARUKI MURAKAMI

Author of The Wind-Up Bird Chronicle

Definition

• ACC guideline


HF is a **complex clinical syndrome** that results from any structural or functional impairment of ventricular **filling or ejection** of blood


• ESC guideline

HF is a **clinical syndrome** characterized by typical symptoms (e.g. breathlessness, ankle swelling and fatigue) that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary crackles and peripheral oedema) caused by a structural and/or functional cardiac abnormality, resulting in a **reduced cardiac output** and/or **elevated intracardiac pressures** at rest or during stress.

Definition

 ACC guideline HF is a complex of any structural or function? **1000** • ES(**HF** is **NOT** a diagnosis ! HF 3. panied breat v crackles and by signs te unctional cardiac peripheral oedens, abnormality, resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress.

Things You Must Know

- HF with reduced EF (HFrEF LVEF<40%) Vs HF with preserved EF (HFpEF LVEF>40%)
- Stage and Class (+/- INTERMAC)

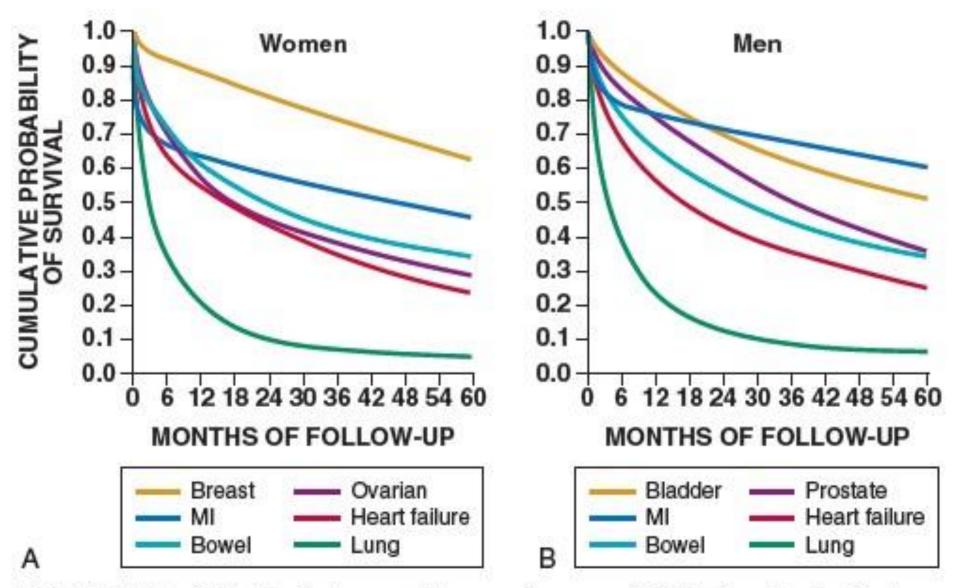


FIGURE 25.1 Survival in HF patients compared to cancer. Five-year survival following a first admission to any Scottish hospital in 1991 for heart failure, myocardial infarction (MI), and the four most common sites of cancer specific to men and women. (Modified from Stewart S, MacIntyre K, Hole DJ, et al. More 'malignant' than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail 2001;3:315-22.)

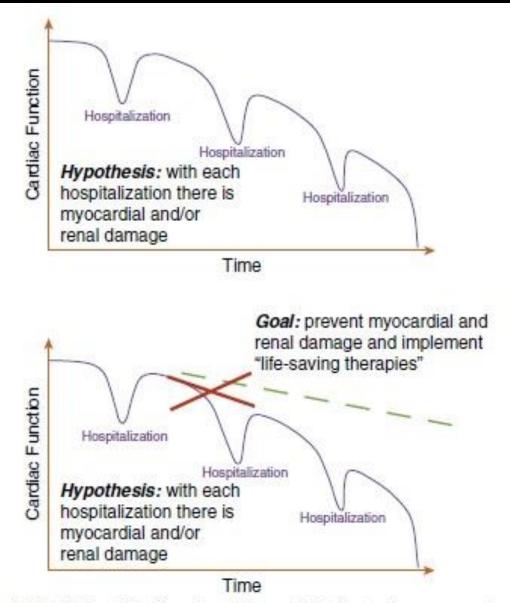
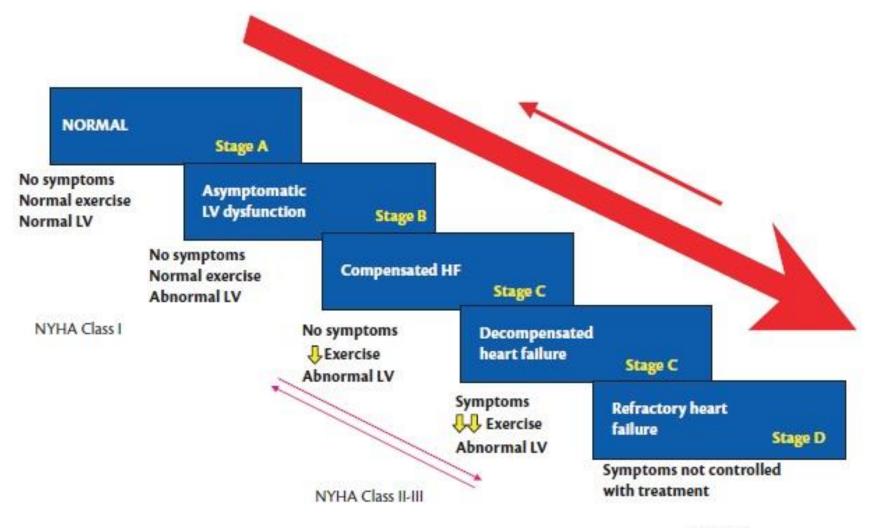


Fig. 36.6 (A) Contribution of each hospitalization to the progression of heart failure. (B) Potential impact of halting organ injury during an acute heart failure hospitalization. (Modified from Gheorghiade M, De Luca L, Fonarow GC, et al. Pathophysiologic targets in the early phase of acute heart failure syndromes. *Am J Cardiol.* 2005;96[6A]:11G–17G.)


TABLE 21.1 American College of Cardiology/American Heart Association (ACC/AHA) Stages of Heart Failure (HF) Compared to the New York Heart Association (NYHA) Functional Classification

	ACC/AHA STAGES		NYHA FUNCTIONAL CLASSIFICATION		
A	At high risk for HF but without structural heart disease or symptoms of HF.	None			
В	Structural heart disease but without signs or symptoms of HF.	1	No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF.		
с	Structural heart disease with prior or current symptoms of HF.	1 11 111	No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF. Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in symptoms of HF. Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes symptoms of HF.		
D	Refractory HF requiring specialized interventions.	IV	Unable to carry on any physical activity without symptoms of HF, or symptoms of HF at rest.		

Normals 32%

FIGURE 25.3 Stages of heart failure (HF) and prevalence of stages (data from the Olmstead County Epidemiology Study). Patients with stage A HF are at high risk for HF but do not have structural heart disease or symptoms of HF. This group includes patients with hypertension, diabetes, coronary artery disease (CAD), previous exposure to cardiotoxic drugs, or a family history of cardiomyopathy. Patients with stage B HF have structural heart disease but have no symptoms of HF. This group includes patients with left ventricular (LV) hypertrophy, previous myocardial infarction (MI), LV systolic dysfunction, or valvular heart disease, all of whom would be considered to have New York Heart Association (NYHA) Class I symptoms. Patients with stage C HF have known structural heart disease and current or previous symptoms of HF. Their symptoms may be classified as NYHA Class I, II, or III. Patients with stage D HF have refractory symptoms of HF at rest despite maximal medical therapy, are hospitalized, and require specialized interventions or hospice care. All such patients would be considered to have NYHA Class IV symptoms. AHA. American Heart Association; ACC, American College of Cardiology. (Modified from Ammar KA, Jacobsen SJ, Mahoney DW, et al. Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation 2007;115:1563-70.)

NYHA IV

Fig. 1.2 Schematic depiction of the progression of heart failure using the ACC/AHA Guidelines for the Evaluation and Management of Heart Failure in the Adult. This adaptation superimposes NYHA functional class on the stages to emphasize that stages A and B represent asymptomatic conditions. Adapted from Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldmanmd AM, Francis GS, et al. ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure).

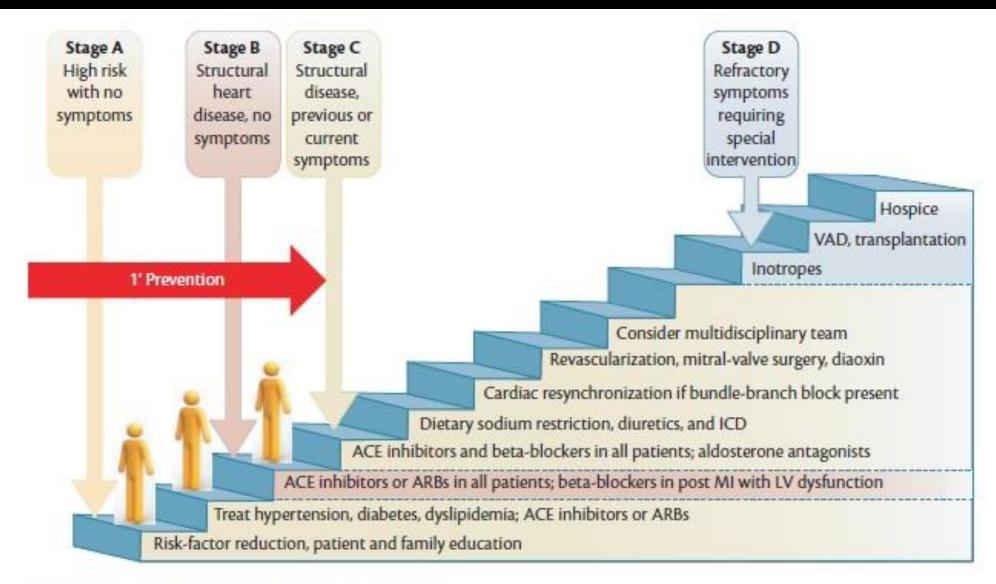


Fig. 1.3 Opportunities to prevent heart failure in AHA/ACC stages A and B. Adapted from Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348(20):2007–18.

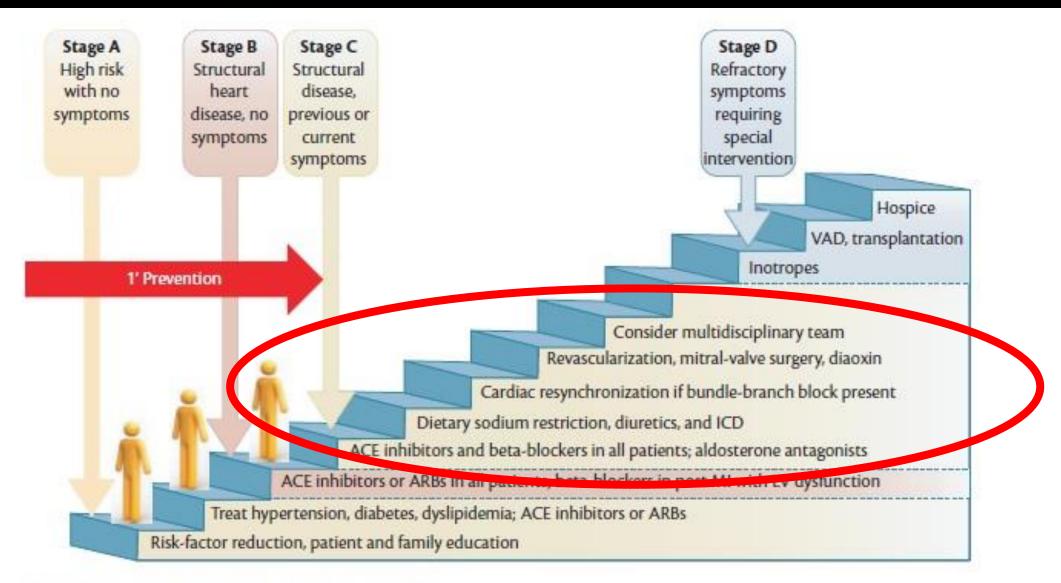


Fig. 1.3 Opportunities to prevent heart failure in AHA/ACC stages A and B. Adapted from Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348(20):2007–18.

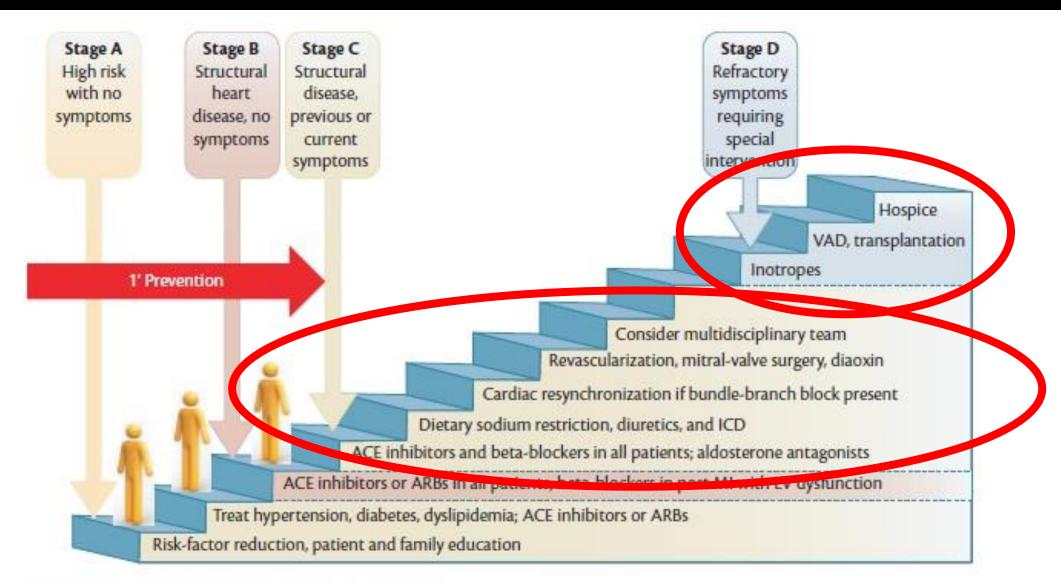


Fig. 1.3 Opportunities to prevent heart failure in AHA/ACC stages A and B. Adapted from Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348(20):2007–18. Box 1.1 Clinical features useful for the identification of patients with stage D heart failure⁵⁵

- Repeated (≥2) hospitalizations or Emergency Department visits for heart failure in the past year
- Progressive deterioration in renal function—e.g., rise in blood urea nitrogen (BUN) and creatinine
- Weight loss without other cause (e.g., cardiac cachexia)
- Intolerance to angiotensin converting enzyme (ACE) inhibitors due to hypotension and/or worsening renal function
- Intolerance to β-blockers due to worsening heart failure or hypotension
- Frequent systolic blood pressure <90 mmHg
- Persistent dyspnea with dressing or bathing requiring rest
- Inability to walk one block on the level ground due to dyspnea or fatigue
- Recent need to escalate diuretics to maintain volume status, often reaching daily furosemide equivalent dose >160 mg/day and/or use of supplemental metolazone therapy
- Progressive decline in serum sodium, usually to <133 mEq/L
- Frequent ICD shocks

 Yancy CW, Jessup M, Bozkurt B. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013;128(16):e240–327.

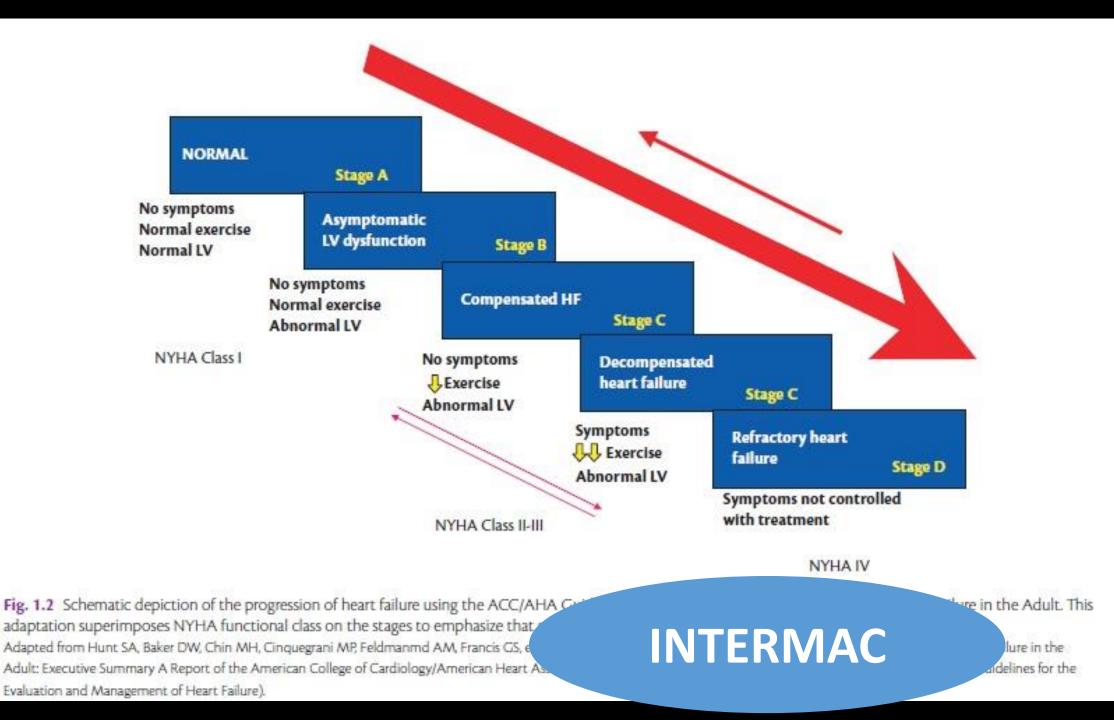


Table 1.1 INTERMACS criteria which further discriminate patients with advanced heart failure beyond NYHA class

INTERMACS level	NYHA class	Shorthand "Crash and burn"		
1	IV			
2	IV	"Sliding fast" on inotropes		
3	IV	"Stable" on continuous inotropes		
4	Ambulatory IV	Symptoms at rest		
5	Ambulatory IV	"Housebound" Comfortable at rest, symptoms with minimal activity		
6	IIIB	"Walking wounded" Meaningful activity limited		
7	Ш	Advanced class III		

Adapted from reference 115 (Stevenson LW, Pagani FD, Young JB, et al. INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant 2009;28(6):535–41.)

Stages and Classes

- Functional class changes day to day but not stages
- Patients with NYHA I-II have better prognosis
- Beware of 'true Class I'
- Identify stage D patients
- Preventing patients progress to stage C and D

Symptoms and signs

- History if of paramount importance
- Physical exam may not be 'too accurate' in making diagnosis (accuracy ~50-70%)
- Essential for monitoring day to day change in haemodynamic status

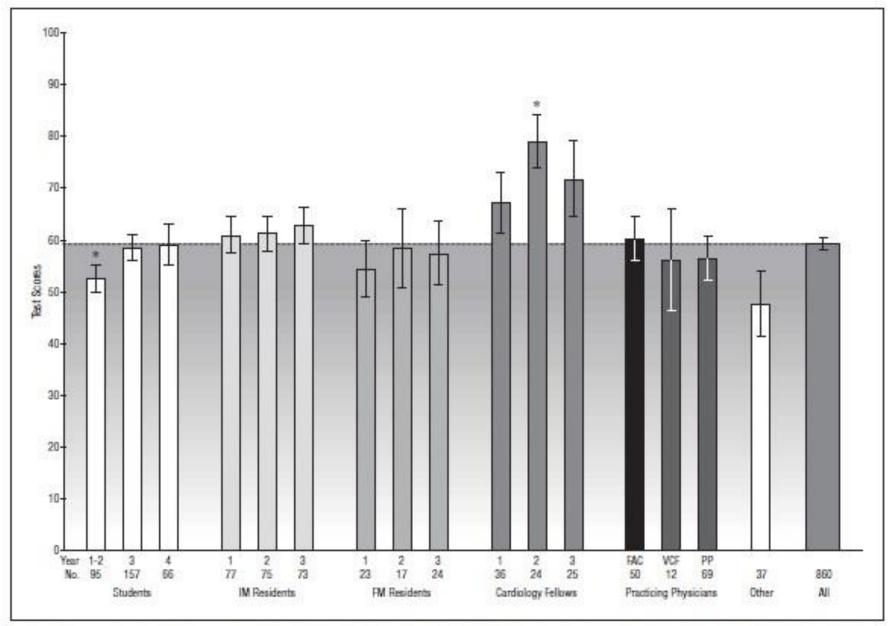


Figure 1. Mean test scores for cardiac examination competency by training level. The dotted horizontal line indicates the mean score for all participants (59.24). The mean score for full-time faculty (FAC) was not significantly different from that of medical students, internal medicine (IM) residents, family medicine (FM) residents, or other practicing physicians (volunteer clinical faculty [VCF] and private practice [PP]). Mean scores were improved in third- and fourth-year students compared with first- and second-year students (*P*=.003), but they did not improve thereafter. Asterisk indicates *P*=.045. Error bars represent 95% confidence intervals.

Competency in Cardiac Examination Skills in Medical Students, Trainees, Physicians, and FacultyA Multicenter Study Jasminka M. Vukanovic-Criley, MD; Stuart Criley, MBA; Carole Marie Warde, MD; John R. Boker, PhD; Lempira Guevara-Matheus, MD; Winthrop Hallowell Churchill, MD; William P. Nelson, MD; John Michael Criley, MD et al Arch Int

Med 2006,166:610-616

Table 1. Criteria of CHF.*

MAJOR CRITERIA

Paroxysmal nocturnal dyspnea or orthopnea Neck-vein distention Rales Cardiomegaly Acute pulmonary edema S₃ gallop Increased venous pressure ->16 cm of water Circulation time ≥25 sec Hepatojugular reflux

MINOR CRITERIA

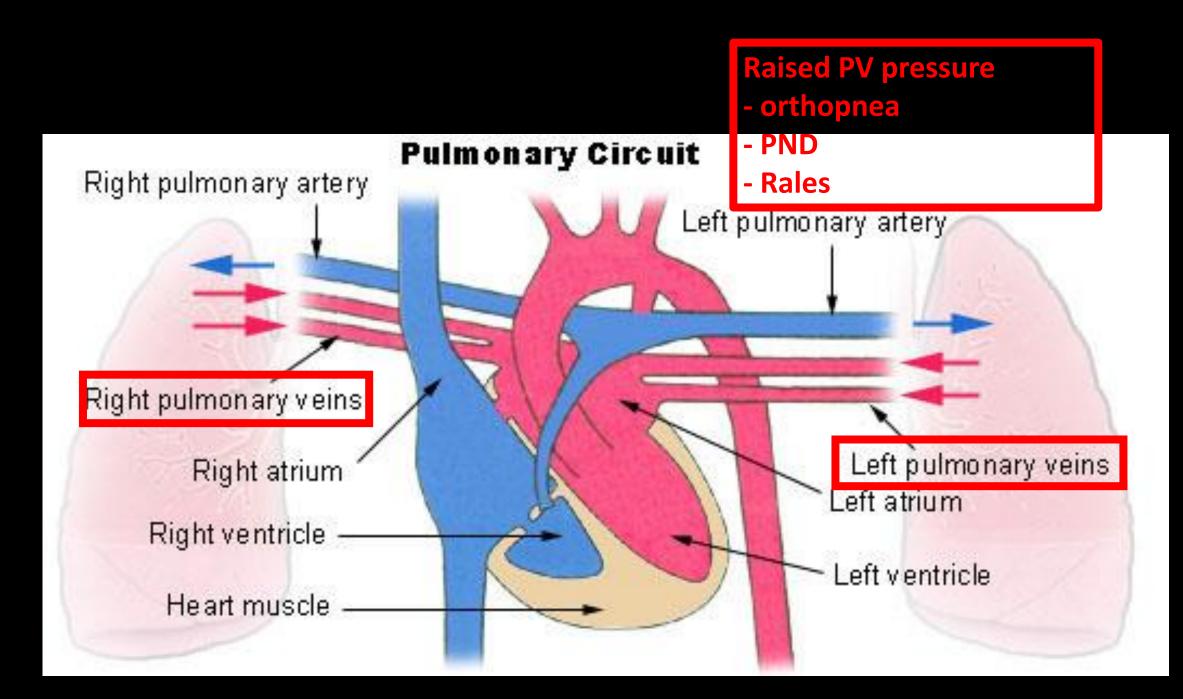
Ankle edema Night cough Dyspnea on exertion Hepatomegaly Pleural effusion Vital capacity ↓ ¼3 from maximum Tachycardia (rate of ≥120/min) MAJOR OR MINOR CRITERION Weight loss ≥4.5 kg in 5 days in response to treatment

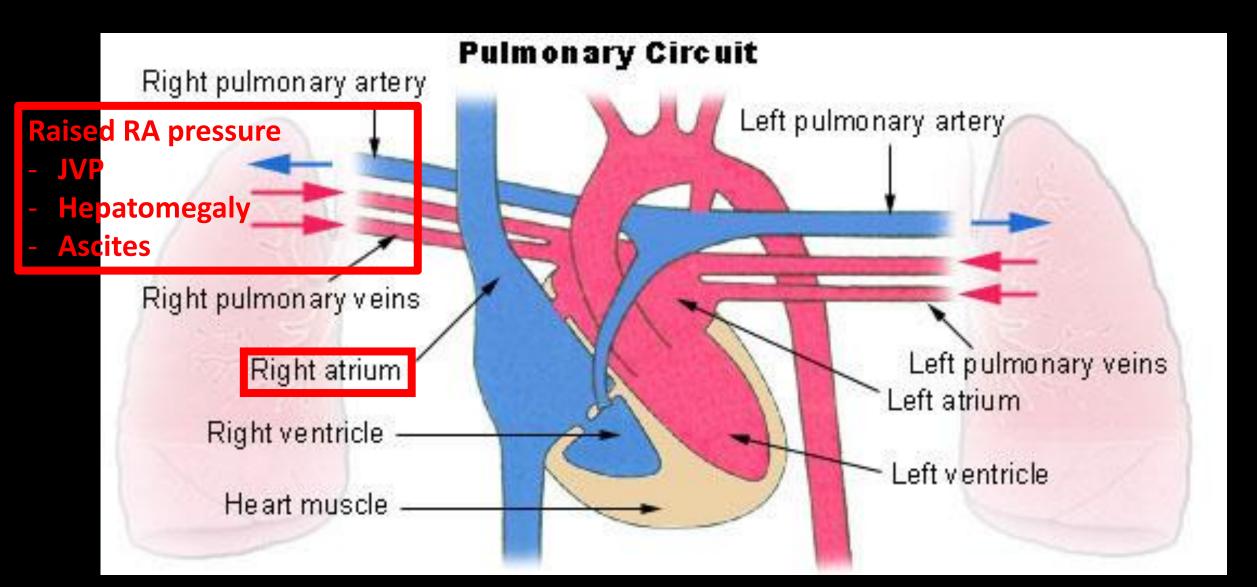
*For establishing a definite diagnosis of congestive heart failure in this study, 2 major or 1 major & 2 minor criteria had to be present concurrently.

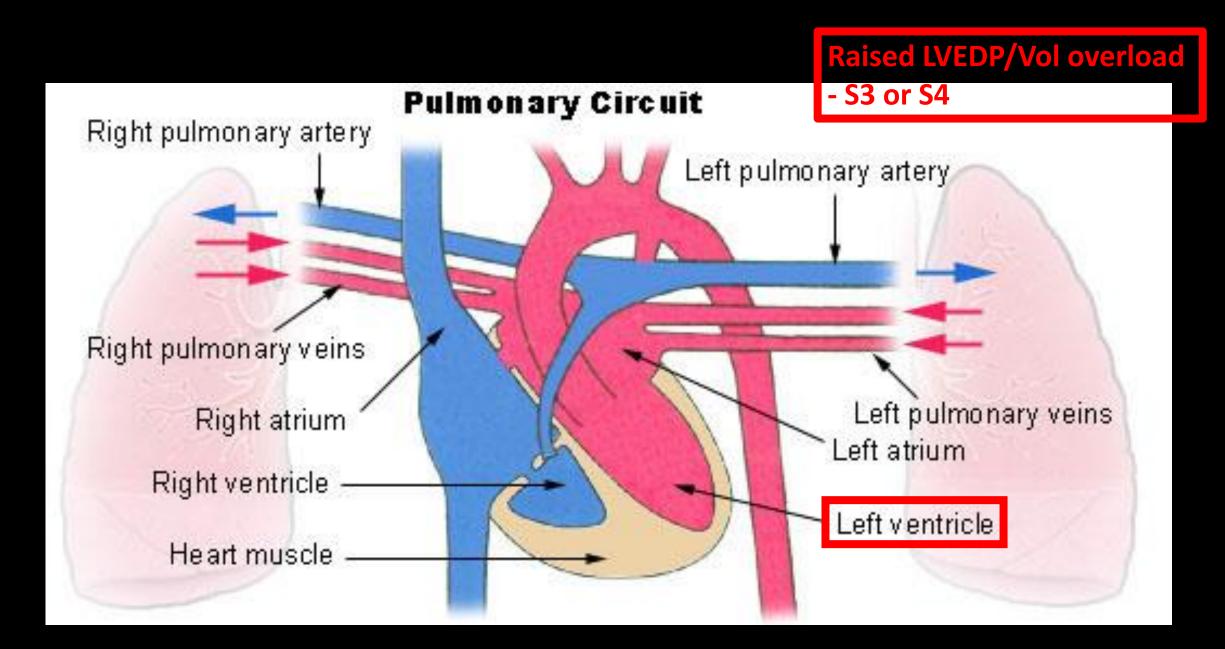
TABLE 28-8 Sensitivity, Specificity, and Predictive Accuracy of Symptoms and Signs for Diagnosing Heart Failure

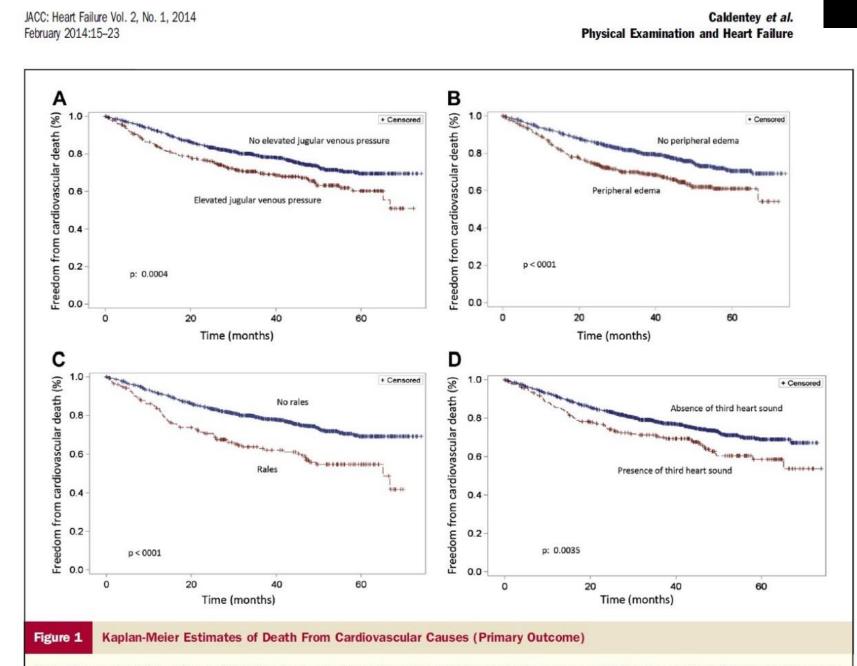
SYMPTOMS OR SIGNS	SENSITIVITY (%)	SPECIFICITY (%)	PREDICTIVE ACCURACY (%)
Exertional dyspnea	66	52	23
Orthopnea	21	81	2
Paroxysmal	33	76	26
History of edema	23	80	22
Resting heart rate	7	99	6
Rales	13	91	21
Third heart sound	31	95	61
Jugular venous distention	10	97	2
Edema (on examination)	10	93	3

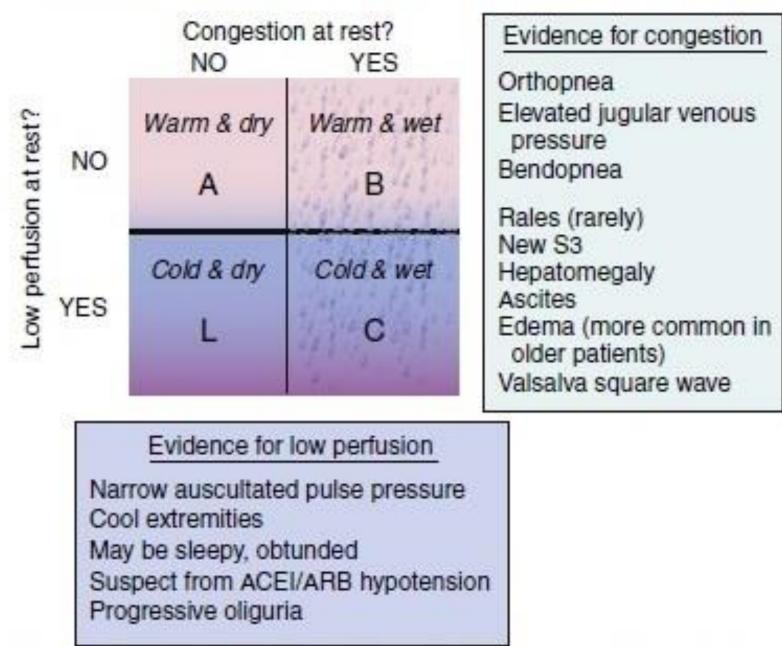

From Harlan WR, Oberman A, Grimm R, et al: Chronic congestive heart failure in coronary artery disease: clinical criteria. Ann Intern Med 86:133–138, 1977.


TABLE 28-7 Utility of Components of History and Physical Examination in Detecting Pulmonary Capillary Wedge Pressure >22 mm Hg


	SENSITIVITY	SPECIFICITY	Predictive Value		Likelihood Ratio	
FINDING			POSITIVE	NEGATIVE	POSITIVE	NEGATIVE
Rales (≥⅓ lung field)	15	89	69	38	1.32	1.04
Sa	62	32	61	33	0.92	0.85
Ascites (≥ moderate)	21	92	81	40	2.44	1.15
Edema (≥2+)	41	66	67	40	1.20	1.11
Orthopnea (≥2 pillow)	86	25	66	51	1.15	1.80
Hepatomegaly (>4 fb)	15	93	78	39	2.13	1.09
Hepatojugular reflux	83	27	65	49	1.13	1.54
JVP ≥12 mm Hg	65	64	75	52	1.79	1.82
JVP <8 mm Hg	4.3	81	28	33	0.23	0.85


fb, Fingerbreadths; JVP, jugular venous pressure.


Modified from Drazner MH, Hellkamp AS, Leier CV, et al: Value of clinician assessment of hemodynamics in advanced heart failure: the escape trial. Circ Heart Fail 1:170–177, 2008.



Kaplan-Meier analysis of event-free survival for the primary endpoint (cardiovascular mortality) according to the presence (red) or absence (blue) of elevated jugular venous pressure (A), peripheral edema (B), rales (C), and third heart sound (D). Comparisons were performed by log-rank tests.

TWO-MINUTE ASSESSMENT OF HEMODYNAMIC PROFILE

Norhia JACC 2003

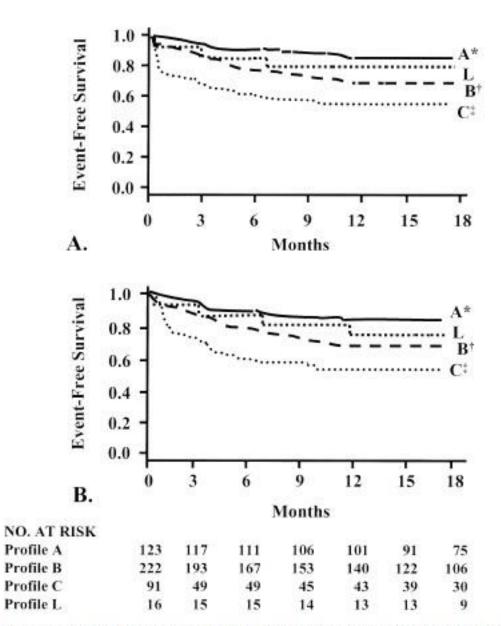
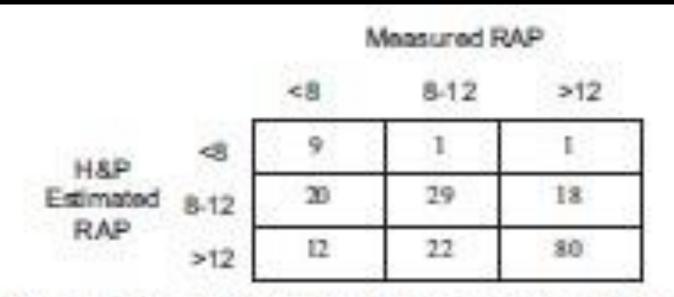
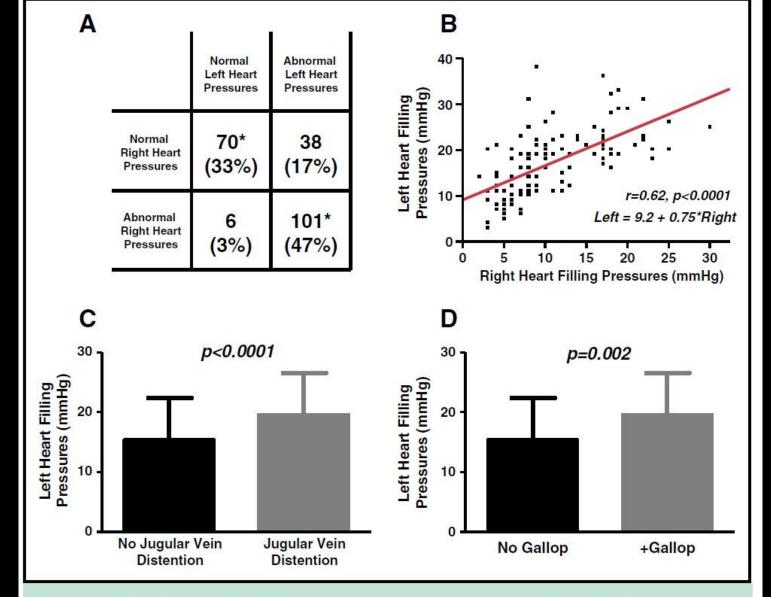
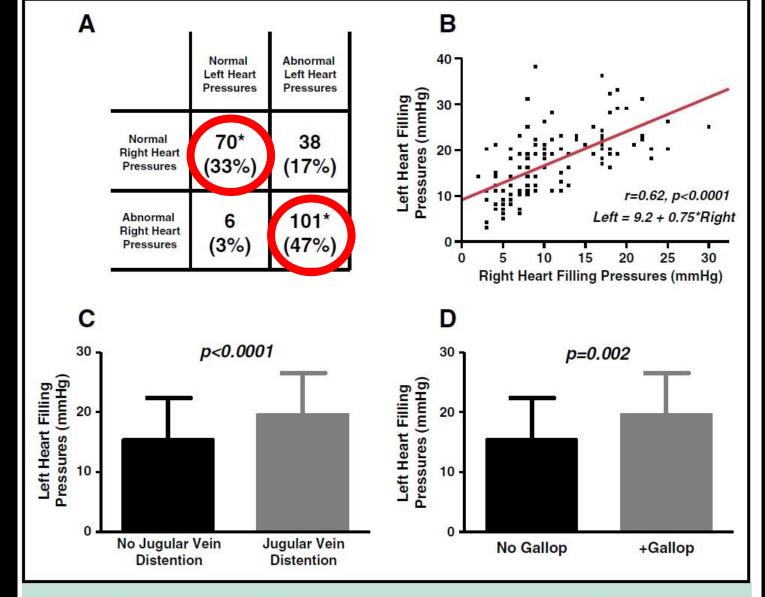


Figure 2. Kaplan-Meier survival curves according to the clinical profiles. The end points were one-year mortality (Panel A) and one-year mortality plus urgent transplantation (Panel B). In both panels, profile C conferred the worst outcomes, followed by profile B, which was worse than profile A. Profile L had too few patients for meaningful statistical analysis. Panel A: *p = 0.002 for profile A versus profile B, $\pm p = 0.008$ for profile B versus profile C, $\pm p < 0.001$ for profile A versus profile C. Panel B: *p = 0.002 for profile B, $\pm p = 0.005$ for profile B versus profile C, $\pm p < 0.001$ for profile A versus profile C. Panel B: *p = 0.002 for profile B, $\pm p = 0.005$ for profile B versus profile C, $\pm p < 0.001$ for profile A versus profile C.

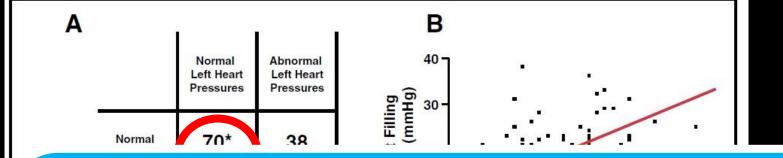
Norhia JACC 2003

Is our assessment of **'congestion'** accurate? And what do they mean?


Figure 1. Number of patients stratified by their estimated RAP by H&P examination (vertically) and their measured RAP by right heart catheterization (horizontally).

Drazner Circ HF 2003


Figure (A) Left- and right-sided filling pressures determined at catheterization were concordantly normal or abnormal (asterisks) 80% of the time, and (B) were significantly correlated with one another. (C, D) Left heart pressures were significantly higher in patients deemed to have jugular venous distention or with gallop sounds (S3 and/or S4).

Bedside Assessment of Cardiac Hemodynamics: The Impact of Noninvasive Testing and Examiner Experience Borlaug 2011 AJM

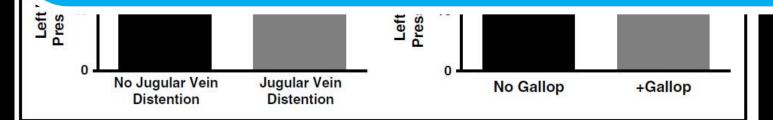
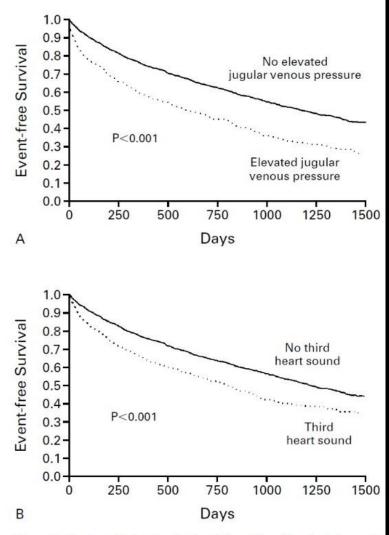


Figure (A) Left- and right-sided filling pressures determined at catheterization were concordantly normal or abnormal (asterisks) 80% of the time, and (B) were significantly correlated with one another. (C, D) Left heart pressures were significantly higher in patients deemed to have jugular venous distention or with gallop sounds (S3 and/or S4).

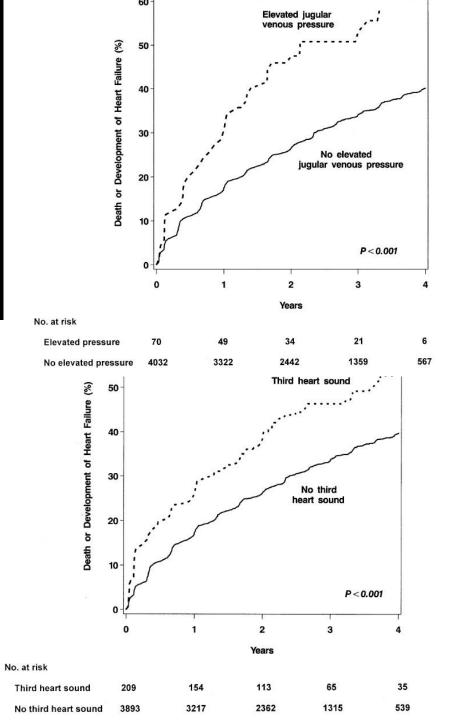
Bedside Assessment of Cardiac Hemodynamics: The Impact of Noninvasive Testing and Examiner Experience Borlaug 2011 AJM

80% accuracy determining Normal Vs Abnormal Accuracy improved with experience

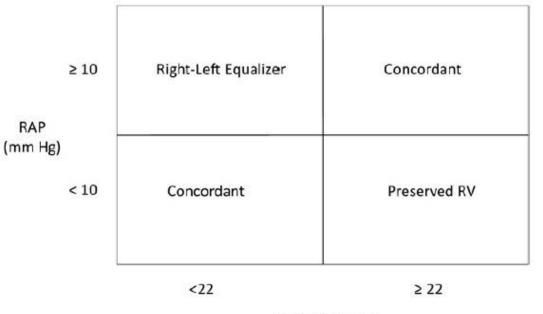

Figure (A) Left- and right-sided filling pressures determined at catheterization were concordantly normal or abnormal (asterisks) 80% of the time, and (B) were significantly correlated with one another. (C, D) Left heart pressures were significantly higher in patients deemed to have jugular venous distention or with gallop sounds (S3 and/or S4).

Bedside Assessment of Cardiac Hemodynamics: The Impact of Noninvasive Testing and Examiner Experience Borlaug 2011 AJM

	LVEDP >15 mm Hg	LVEF <50%	BNP >100 pg/ml
3	05510756.47	05 05 250 00 V	WeiWep 244
Sensitivity	41 (26-58)	52 (31-73)	32 (20-46)
Specificity	92 (80-98)	87 (76-94)	92 (78-98)
Positive predictive value	81 (58-95)	57 (34-78)	85 (62-97)
Negative predictive value	65 (53-76)	84 (73-82)	48 (36-60)
Accuracy	69 (58-78)	78 (68-86)	56 (45-67)
Sensitivity	46 (31-63)	43 (23-66)	40 (26-54)
Specificity	80 (66-90)	72 (59-82)	78 (61-90)
Positive predictive value	66 (46-82)	34 (18-54)	72 (52-87)
Negative predictive value	64 (51-76)	79 (66-88)	47 (34-60)
Accuracy	64 (54-74)	64 (54-74)	55 (44-66)
Sensitivity	68 (52-82)	74 (52-90)	57 (42-70)
Specificity	73 (59-85)	64 (52-76)	72 (55-86)
Positive predictive value	68 (52-82)	42 (26-58)	75 (59-87)
Negative predictive value	73 (59-85)	88 (75-95)	53 (38-67)
Accuracy	71 (B1-80)	67 (56-76)	63 (52-73)


tion fraction.

*Data are presented as percentage (95% confidence interval).


Figure 1. Kaplan–Meier Analysis of Event-free Survival According to the Presence or Absence of Elevated Jugular Venous Pressure (Panel A) and a Third Heart Sound (Panel B).

The end point was a composite of death or hospitalization for heart failure. In Panel A, the 280 patients with elevated jugular venous pressure were significantly more likely than the 2199 patients without elevated jugular venous pressure to reach the composite end point (P<0.001 by the log-rank test). In Panel B, the 597 patients with a third heart sound were significantly more likely than the 1882 patients without a third heart sound to reach the composite end point (P<0.001 by the log-rank test).

azner NEJM 2001 azner AJM 2003

Does JVP correlate with LVEDP?

PCWP(mm Hg)

Figure 1 Hemodynamics profiles characterized by right atrial pressure (RAP) and pulmonary capillary wedge pressure (PCWP). Arbitrary thresholds for elevated RAP ($\geq 10 \text{ mm Hg}$) and PCWP ($\geq 22 \text{ mm Hg}$) were used. Concordant profiles are those in which RAP and PCWP were both elevated or both not elevated. A "right–left" equalizer pattern was characterized as elevated RAP and not elevated PCWP. A "preserved RV" pattern was characterized as elevated PCWP and not elevated RAP.

Table 1Rates of Concordance of RAP and PCWPa WithinThree Time Eras Over 14 Years

	Off inotropes		On in	otropes
Time era	N	Concordance	N	Concordance
1993 to 1998	1,626	74%	464	71%
1998 to 2002	1,369	72%	550	76%
2003 to 2007	1,084	73%	365	79%
		p = 0.4 for order		<i>p</i> = 0.006

^aRAP was classified as elevated when \geq 10 mm Hg and PCWP when \geq 22 mm Hg. RAP and PCWP were classified as concordant when both were elevated or both were not elevated.

Drazner Circ HF 2013

Summary

- Presence of S3 and raised JVP correlates worse outcome
- Clinical assessment of JVP largely reflects RA pressure
- Raised RAP correlates with high LVEDP ~3/4 of time
- If in doubt, further means e.g. echo or cath would be needed

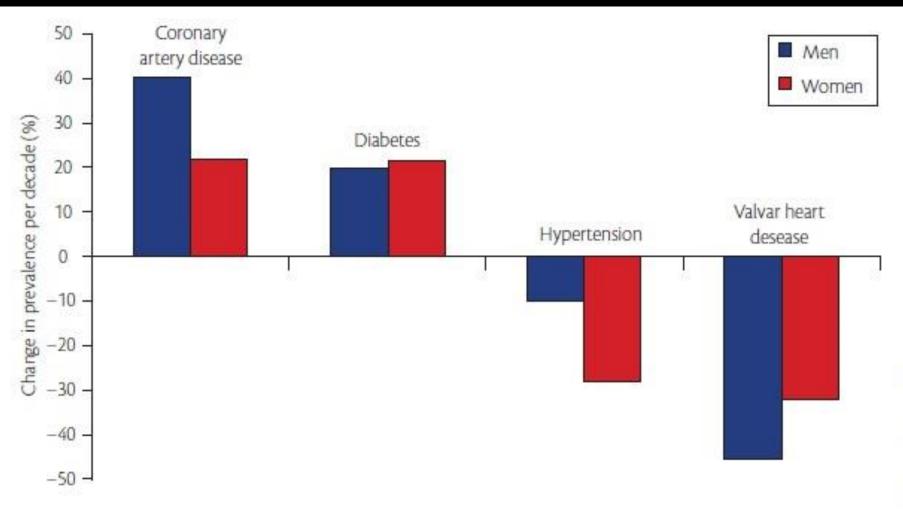
Aetiologies

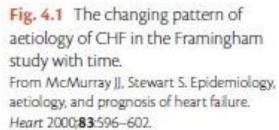
Table 4.1 Causes of heart failure and the common modes of presentation

Cause	Examples of presentations
CHD	Myocardial infarction Chronic ischaemia Arrhythmias
Hypertension	Heart failure with preserved systolic function 'Burnt out' hypertensive cardiomyopathy Malignant hypertension/acute pulmonary oedema
Valve disease	Primary valvular disease e.g. endocarditis Secondary valvular disease e.g. functional regurgitation Congenital valvular disease
Arrhythmias	Incessant atrial arrhythmias Ventricular arrhythmias
Dilated cardiomyopathy	Idiopathic Inherited (familial) Peripartum Toxins: alcohol, cocaine, iron, copper
Congenital heart disease	Corrected transposition of great arteries Repaired tetralogy of Fallot Ebstein's anomaly
Infective	Viral myocarditis Chagas' disease HIV Lyme disease

Adapted from Oxford Textbook of Heart Failure, OUP 2011

latrogenic	Anthracyclines Abstruzimab
Infiltrative	Amyloid Sarcoid Neoplastic
Storage disorders	Haemochromatosis Fabry's disease Glycogen storage diseases
Endomyocardial disease	Radiotherapy Endomyocardial fibrosis Carcinoid
Pericardial disease	Calcification Infiltrative
Metabolic	Endocrine disease Nutritional disease (thiamine deficiency, selenium deficiency) Autoimmune disease
Neuromuscular disease	Friedreich's ataxia Muscular dystrophy
High-output	Anaemia Thyrotoxicosis A-V fistulae Paget's disease


 Table 4.2
 Aetiology of heart failure in contemporary randomized clinical trials and major registries

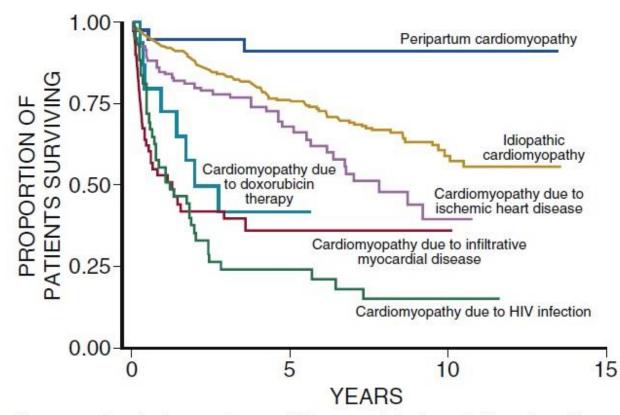

Study	RCT/ REG	Size	Agea	Male (%)	lschaemic (%)	Nonischaemic (%)	HT (%)	IDCM (%)	Valve ^b (%)	Other (%)	Unknown (%)
SOLVD ⁵	RCT	2569	61	80	71	-	-	18	=	3	-
DIG ⁶	RCT	6800	64	78	70	30	9	15	4	6	-
MERIT-HF7	RCT	3991	64	78	66	34	-	let:	-	-	
CIBIS-II ⁸	RCT	2647	61	81	50	-	-	12	4	-	38
ATLAS ⁹	RCT	3192	64	79	64	35	20	28	2	6	-
RALES ¹⁰	RCT	1663	65	73	54	46	-	140	-	+	-
Val-HeFT ¹¹	RCT	5010	62	80	57	-	7	31	<i></i>	5	-
COPERNICUS ¹²	RCT	2289	63	80	67	12	-	120	2	-	
COMET ¹³	RCT	3029	62	80	53	-	18	40	4	-	-
COMPANION ¹⁴	RCT	1520	67	68	56	44	-	.ec	-	+	-
CARE-HF15	RCT	813	67	73	38	-	-	-20	5	5	62
GISSI-HF16	RCT	4574	68	77	40	-	18	34	4	3	5
SOLVD ¹⁷	REG	6273	62	74	69	31	7	13	-	11	-
SPICE ¹⁸	REG	9580	66	74	63	-	4	17	5	-	6
ADHERE ¹⁹	REG	105 388	72	48	57	14	-	120	4	2	-
OPTIMIZE-HF ²⁰	REG	48 612	73	48	46	-	23		-	-	-

HT, hypertension; IDCM, idiopathic dilated cardiomyopathy; RCT, randomized clinical trial; REG, registry.

^a Mean age in years.

^bValvular heart failure.

NOTATION	M Morpho-functional Phenotype	O Organ/system Involvement	G GENETIC INHERITANCE PATTERN	E ETIOLOGY	S STAGE
CHARACT ERIST ICS	Proband's cardiomyopathy (CM) diagnosis (DCM, HCM, RCM, ARVC/D, LVNC)	Clinical history and evaluation Organ involvement: Extracardiac organs/tissues Multidisciplinary evaluation according per clinical needs or diagnostic hypothesis	Genetic counseling with pedigree Familial Familial Non-familial; Phenotypically sporadic Inheritance AD, AR XL (R or D) or Matrilineal Consultant non-informative about family history Clinical family screening - Affected, asymptomatic relative unaware of the disease - Relatives with ECG abnormalities - Healthy family members with normal ECG and ECHO	Genetic testing in the proband Positive Negative Cascade genetic testing in relatives Regular monitoring in relatives	Functional status ACC/AHA, NYHA
SUBSCRIPT	 D Dilated H Hypertrophic R Restrictive R EMF Endomyocardial fibrosis LV=left ventricle RU-right ventricle RU-right ventricular A ARVC M=major m=minor c=category LV=left ventricle RU-right ventris RU-right ventri	 H Heart LV=left ventricle RV=right ventricle RLV=biventricular M Muscle (skeletal) N Nervous C Cutaneous E Eye, Ocular A Auditory K Kidney G Gastrointestinal Li Liver Lu Lung S Skeletal O Absence of organ/system involvement*, e.g. in family members who are healthy mutation carriers; the mutation is specified in E and inheritance in G 	N Family history negative U Family history unknown AD Autosomal dominant AR Autosomal recessive XLD X-linked dominant XLR X-linked recessive XL X-linked M Matrilineal O Family history not investigated* Undet Inheritance still undetermined S Phenotypically Sporadic (apparent or real)	 G Genetic cause OC Obligate carrier ONC Obligate non-carrier DN De novo Neg Genetic test negative for the known familial mutation N Genetic defect not identified O No genetic test, any reason' G-A-TTR Genetic amyloidosis G-HFE Hemochromatosis Non-genetic etiologies: M Myocarditis V Viral infection (add the virus identified in affected heart) Al Autoimmune/immune- mediate; suspected (AI-S), proven (AI-P) A Amyloidosis (add type: A-K, A-L, A-SAA) I Infectious, non viral (add the infectious agent) T Toxicity (add cause/drug) Eo Hypereosinophilic heart disease O Other 	ACC-AHA stage represented as letter A, B, C, D NA not applicable NU not used <i>followed by</i> NYHA class represented as Roman numeral I, II, III, IV


Fig. 20.1 Classification of cardiomyopathy according to MOGE(S) nosology. M, Morphofunctional phenotype; O, organ involvement; G, genetic inheritance pattern; E, etiology. (Annotation provides the description of the specific disease gene and mutation, as well as a description of nongenetic etiology). S, symptoms and functional status according to ACC/AHA staging and NYHA Class. A color code assigned to each variant can provide information about the potential role of the identified variant: affects function or probably affects function (red); variant of unknown significance (VUS) (yellow); and probably does not affect function (or probably no functional effect) or does not affect function (no functional effect) (green). DCM, Dilated cardiomyopathy. (From Arbustini E, Narula N, Tavazzi L, et al. The MOGE[S] classification of cardiomyopathy for clinicians. *J Am Coll Cardiol.* 2014;64[3]:304–318.)

	M IPHO-FUNCTIONAL PHENOTYPE	O Organ/System Involvement	G GENETIC INHERI PATTERN		E ETIOLOGY	S STAGE
	Proband's ardiomyopathy CM) diagnosis CM, HCM, RCM, RVC/D, LVNC)	Clinical history and evaluation Organ involvement: Extracardiac organs/tissues Multidisciplinary evaluation according per clinical needs or diagnostic hypothesis	Genetic counseling with pedigree Familial Non-familial; Phenotypically sporadic Inheritance AD, AR XL (R or D) or Matrilineal Consultant	Clinical family screening Affected, asymptomatic relative unaware of the disease Relatives with ECG and/or Echo abnormalities Healthy family members with normal ECG and ECHO	Genetic testing in the proband Positive Negative Cascade genetic testing in relatives Negative - New tests novel genes - Regular monitoring in relatives	Functional status ACC/AHA, NYHA
E	10506	ed entrophi nctive s sketal o Absence of organ/system involvement*, e.g. in family members who are healthy mutation carriers; the mutation is	c	d" ed	 G Genetic cause OC Obligate carrier ONC Obligate non-carrier DN De novo Neg Genetic test negative for the known familial mutation N Genetic defect not identified O No genetic test, any reason* G-A-TTR Genetic amyloidosis G-HFE Hemochromatosis Non-genetic etiologies: M Myocarditis V Viral infection (add the virus identified in affected heart) Al Autoimmune/immune- mediate; suspected (AI-S), proven (AI-P) A Amyloidosis (add type: A-K, A-L, A-SAA) Infectious, non viral (add the infectious agent) T Toxicity (add cause/drug) 	ACC-AHA stage represented as letter A , B , C , D NA not applicable NU not used <i>followed by</i> NYHA class represented as Roman numeral I , II , III , IV

> **Fig. 20.1** Classification of cardiomyopathy according to MOGE(S) nosology. M, Morphofunctional phenotype; O, organ involvement; G, genetic inheritance pattern; E, etiology. (Annotation provides the description of the specific disease gene and mutation, as well as a description of nongenetic etiology). S, symptoms and functional status according to ACC/AHA staging and NYHA Class. A color code assigned to each variant can provide information about the potential role of the identified variant: affects function or probably affects function (red); variant of unknown significance (VUS) (yellow); and probably does not affect function (or probably no functional effect) or does not affect function (no functional effect) (green). DCM, Dilated cardiomyopathy. (From Arbustini E, Narula N, Tavazzi L, et al. The MOGE[S] classification of cardiomyopathy for clinicians. *J Am Coll Cardiol.* 2014;64[3]:304–318.)

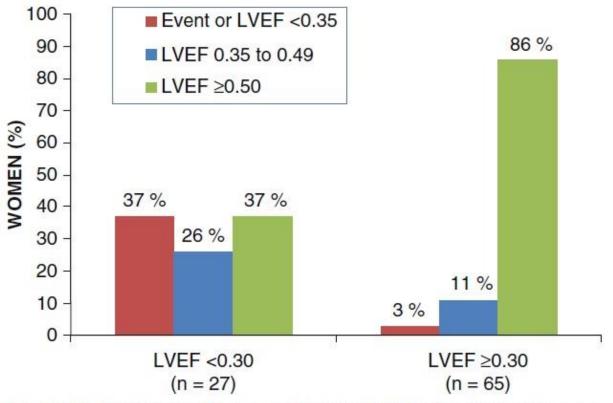
O Other

- Coronary artery disease
- Valvular heart disease
- Alcoholic heart disease
- Endocrine cause
- Recreational drugs (Cocaine, amphetamine)
- Peripartum cardiomyopathy
- Cancer treatment related
- Micronutrients deficiency
- High output heart failure
- Idiopathic

Fig. 20.9 Survival according to different etiologies of dilated cardiomyopathy. In a cohort of patients who underwent endomyocardial biopsy as part of an evaluation for heart failure due to unexplained cardiomyopathy, when compared with the patients with idiopathic cardiomyopathy, survival was significantly better in patients with peripartum cardiomyopathy and significantly worse among the patients with cardiomyopathy due to infiltrative myocardial disease, human immunodeficiency virus *(HIV)* infection, therapy with doxorubicin, and ischemic heart disease. (From Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. *N Engl J Med.* 2000;342[15]:1077–1084.)

- Coronary artery disease
- Valvular heart disease
- Alcoholic heart disease
- Endocrine cause
- Recreational drugs (Cocaine, amph
- Peripartum cardiomyopathy
- Cancer treatment related
- Micronutrients deficiency
- High output heart failure
- Idiopathic

-Most common cause -Must be excluded


Dilated Morphologies

- Coronary artery disease
- Valvular heart disease
- Alcoholic heart disease
- Endocrine cause
- Recreational drugs (Cocaine, amphet
- Peripartum cardiomyopathy
- Cancer treatment related
- Micronutrients deficiency
- High output heart failure
- Idiopathic

Related to period of binge drinking behavior (7-8 standard drinks for >5 years)

- Coronary artery disease
- Valvular heart disease
- Alcoholic heart disease
- Endocrine cause
- Recreational drugs (Cocaine, amphe
- Peripartum cardiomyopathy
- Cancer treatment related
- Micronutrients deficiency
- High output heart failure
- Idiopathic

-Last month upto 5 months post-partum
-Good prognosis
-Differentials include SCAD, stress related CMP
-Counselling for breast feeding and future pregnancy

Fig. 20.11 Final status based on the initial LVEF of patients with peripartum cardiomyopathy. Comparison of status at the end of the study based on the initial LVEF. *Red column*, percentage of women with no recovery (event or final LVEF <0.35); *blue column*, percentage of women with partial recovery (final LVEF 0.35–0.49); *green column*, percentage of women with complete recovery (LVEF ≥0.50). Recovery was evident in 86% of women with a baseline LVEF ≥0.30, compared with 37% of those with an LVEF less than 0.30, p <0.001. *LVEF*, Left ventricular ejection fraction. (Modified from McNamara DM, Elkayam U, Alharethi R, et al. Clinical outcomes for peripartum cardiomyopathy in North America: results of the IPAC Study (Investigations of Pregnancy-Associated Cardiomyopathy). *J Am Coll Cardiol.* 2015;66[8]:905–914.)

- Coronary artery disease
- Valvular heart disease
- Alcoholic heart disease
- Endocrine cause
- Recreational drugs (Cocaine, ampheta
- Peripartum cardiomyopathy
- Cancer treatment related
- Micronutrients deficiency
- High output heart failure
- Idiopathic

-Hx of breast cancer,
lymphoma etc.
-radiation to chest wall also
cause CAD, restrictive CMP,
constrictive pericarditis

- Coronary artery disease
- Valvular heart disease
- Alcoholic heart disease
- Endocrine cause
- Recreational drugs (Cocaine, ampheta
- Peripartum cardiomyopathy
- Cancer treatment related
- Micronutrients deficiency
- High output heart failure
- Idiopathic

-thiamine, selenium etc-feeding problem,malabsorption

- Coronary artery disease
- Valvular heart disease
- Alcoholic heart disease
- Endocrine cause
- Recreational drugs (Cocaine, amphetamine)
- Peripartum cardiomyopathy
- Cancer treatment related
- Micronutrients deficiency
- High output heart failure
- Idiopathic

 Confirmed high output status e.g. imaging, RHC
 AV fistula, obesity, liver disease, etc

- Usually infiltrative causes
- Increase stiffness and impair ventricular filling

- Amyloidosis
- Sarcoidosis
- Fabry disease
- Carcinoid disease
- Hypereosinophilic syndrome

- Thick wall
- AL or TTR (familial or wild type)
 - Asso neuropathy and autonomic dysfunction

- Amyloidosis
- Sarcoidosis
- Fabry disease
- Carcinoid disease
- Hypereosinophilic syndrome

- Thick wall
- X-link inheritance
- Asso renal dysfunction and skin lesion
- Enzyme assay available for diagnosis

- Amyloidosis
- Sarcoidosis
- Fabry disease
- Carcinoid disease
- Hypereosinophilic syndrome

Usually affected right sided valves and myocardium

- Amyloidosis
- Sarcoidosis
- Fabry disease
- Carcinoid disease
- Hypereosinophilic syndrome

- High peripheral eosinophil counts
- Intracardiac thrombus even with preserved EF
- Churg-Strauss syndrome

Hypertrophic morphology

Not all LVH are HCM

Symptom/sign	Diagnosis	Paraesthesia/sensory	Amyloidosis	
Learning difficulties, mental retardation	Mitochondrial diseases Noonan/LEOPARD/Costello syndrome	abnormalities/neuropathic pain	 Anderson-Fabry disease 	
mental retai dation	Danon disease	Carpal tunnel syndrome	TTR-related amyloidosis (especially	
Sensorineural deafness • Mitochondrial diseases (particulari diabetes) • Anderson-Fabry disease • LEOPARD syndrome	Mitochondrial diseases (particularly with		when bilateral and in male patients	
	Anderson-Fabry disease	Muscle weakness	 Mitochondrial diseases Glycogen storage disorders FHLI mutations 	
Visual Impairment	Mitochondrial diseases (retinal disease,		 Friedreich's ataxia 	
 optic nerve atrophy) TTR-related amyloidosis (cotton wool type vitreous opacities) Danon disease (retinitis pigmentosa) 		Palpebral ptosis	 Mitochondrial diseases Noonan/LEOPARD syndrome Myotonic dystrophy 	
	 Anderson-Fabry disease (cataracts, corneal opacities) 	Lentigines/café au lait spots	LEOPARD/Noonan syndrome	
Galt disturbance	Friedreich's ataxia			

 Table 4
 Electrocardiographic abnormalities

 suggesting specific diagnoses or morphological

 variants⁶⁷

Finding	Comment	
Short PR interval/pre- excitation	Pre-excitation is a common feature of storage diseases (Pompe, PRKAG2, an Danon) and mitochondrial disorders (MELAS, MERFF). A short PR interval without pre-excitation is seen in Anderson-Fabry disease.	
AV block	Progressive atrioventricular conduction delay is common in mitochondrial disorders, some storage diseases (including Anderson-Fabry disease), amyloidosis, desminopathles and in patients with PRKAG2 mutations.	
Extreme LVH (Sokolow score ≥50)	Extremely large QRS voltage is typical of storage diseases such as Pompe and Danon disease, but can be caused by pre-excitation alone.	
Low QRS voltage (or normal voltages despite increased LV wall thickness)	Low QRS voltage in the absence of pericardial effusion, obesity and lung disease is rare in HCM (limited to cases with end-stage evolution) but is found in up to 50% of patients with AL amyloidosis and 20% with TTR amyloidosis. Differential diagnosis between HCM and cardiac amyloidosis is aided by measuring the ratio between QRS voltages and LV wall thickness.	

Extreme superior ("North West") QRS axis deviation	Seen In patients with Noonan syndrome who have severe basal hypertrophy extending into the RV outflow tract.
Glant negative T wave Inversion (>10 mm)	Giant negative T wave Inversion in the precordial and/or inferolateral leads suggests involvement of the LV apex.
Abnormal Q waves ≥40 ms in duration and/or ≥25% of the R wave in depth and/or ≥3 mm in depth in at least two contiguous leads except aVR	Abnormally deep Q waves in the inferolateral leads, usually with a positive T wave, are associated with an asymmetrical distribution of LVH. Q waves of abnormal duration (≥40 ms) are associated with areas of replacement fibrosis.
Coved ST segment elevation in lateral chest leads	Some patients with apical or distal hypertrophy develop small apical aneurysms, sometimes associated with myocardial scarring. These may only be detectable on CMR, ventriculography or contrast echo, and are occasionally associated with ST elevation in the lateral chest leads.

AV = atrioventricular; AL = amyloid light chain; CMR = cardiac magnetic resonance; HCM = hypertrophic cardiomyopathy; LV = left ventricular; LVH = left ventricular hypertrophy; MELAS = mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; MERFF = myoclonic epilepsy with ragged red fibres; PRKAG2 = gamma-2 subunit of the adenosine monophosphate-activated protein kinase; RV = right ventricular; TTR = transthyretin. Table 5 Echocardiographic features that suggest specific aetiologies (modified from Rapezzi et al.⁶⁷)

Finding	Specific diseases to be considered
Increased interatrial septum thickness	Amyloidosis
Increased AV valve thickness	Amyloidosis; Anderson-Fabry disease
Increased RV free wall thickness	Amyloidosis, myocarditis, Anderson- Fabry disease, Noonan syndrome and related disorders
Mild to moderate pericardial effusion	Amyloidosis, myocarditis
Ground-glass appearance of ventricular myocardium on 2D echocardiography	Amyloidosis

Concentric LVH	Glycogen storage disease, Anderson- Fabry disease, PRKAG2 mutations
Extreme concentric LVH (wall thickness ≥30 mm)	Danon disease, Pompe disease
Global LV hypokinesia (with or without LV dilatation)	Mitochondrial disease, TTR-related amyloidosis, PRKAG2 mutations, Danon disease, myocarditis, advanced sarcomeric HCM, Anderson-Fabry disease
Right ventricular outflow tract obstruction	Noonan syndrome and associated disorders

2D = two-dimensional; AV = atrioventricular; HCM = hypertrophic cardiomyopathy; LV = left ventricular; LVH = left ventricular hypertrophy; PRKAG2 = gamma-2 subunit of the adenosine monophosphate-activated protein kinase; RV = right ventricle; TTR = transthyretin.

Biomarkers

The N-Terminal Pro-BNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study

James L. Januzzi, Jr., MD, Carlos A. Ca Aaron L. Baggish, MD, Annabel A. Roderick Tung, MD, Renee Camer Claudia U. Chae, MD, MPH, Donald M. Ll Stacy Foran-Melanson, MD, Pl

Prognostic Implications of C' **Peptide in Patients With He**

Rapid Measurement of B-Type Natriuretic Peptide in the Emergency Diagnosis of Heart Failure

ORIGINAL ARTICLE

Elizabeth Lee-Lewandrowski, PhD, M Alan S. Maisel, M.D., Padma Krishnaswamy, M.D., Richard M. Nowak, M.D., M.B.A., James McCord, M.D., Judd E. Hollander, M.D., Philippe Duc, M.D., Torbjørn Omland, M.D., Ph.D., Alan B. Storrow, M.D., William T. Abraham, M.D., Alan H.B. Wu, Ph.D., Paul Clopton, M.S., Philippe G. Steg, M.D., et al., for the Breathing Not Properly Multinational Study Investigators*

ORIGINAL ARTICLE

N-Terminal Pro-B-Type Nati N-Terminal Pro-B-Type Natriuretic Peptide and Long-Term Mortality Stable Coronary Heart Disease

Michael R. Zile, MD,^a Brian L. Claggett, PHD,^b Margaret F. Prescott, PH Milton Packer, MD,^e Jean L. Rouleau, MD,^f Karl Swedberg, MD,^g Aksh Victor C Chi MD C Scott D Solomon MDb

Charlotte Kragelund, M.D., Bjørn Grønning, M.D., Lars Køber, D.M.Sc., Per Hildebrandt, D.M.Sc., and Rolf Steffensen, M.D.

ORIGINAL ARTICLE

Use of B-Type Natriuretic Peptide in the Evaluation and Management of Acute Dyspnea

Christian Mueller, M.D., André Scholer, Ph.D., Kirsten Laule-Kilian, B.Sc., Benedict Martina, M.D., Christian Schindler, Ph.D., Peter Buser, M.D., Matthias Pfisterer, M.D., and André P. Perruchoud, M.D.

TABLE 30-1 2013 ACC/AHA Heart Failure Guideline Recommendations for the Use of Biomarkers in Heart Failure

BIOMARKERS		CLASS OF RECOMMENDATION	LEVEL OF EVIDENCE
BNP or NT-proBNP	Diagnosis Prognosis	1	A A
	Guided-therapy (chronic HF)	lla	B
Troponin T or I (Myocardial injury)	Guided-therapy (acute HF) Prognosis	llb I	A
sST2, Galectin-3 (Myocardial fibrosis)	Prognosis	llb	B for chronic A for acute

BNP, B-type natriuretic peptide; HF, heart failure; sST2, soluble ST2.

From Yancy CW, Jessup M, Bozkurt B, et al: 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/ American Heart Association task force on practice guidelines. Circulation 128:e240–327, 2013.

BNP and **NT**-proBNP

- Release upon myocardial stretch
- Half life (BNP 20mins, NT-proBNP 90mins)
- 25% cleared by kidneys (upto eGFR 15ml/min)
- Correlates with NYHA functional class
- Generally higher values in HFrEF than HFpEF
- Higher baseline values in elderly in renal failure
- ARNI raises BNP but not NT-proBNP

- Diagnosis of acute HF
- Diagnosis of chronic HF (as a rule out test)
- Prognosis
- Guide therapy
- Different cutoff values in different clinical situations

Falsely low

- Obesity
- Flash pulmonary edema
- Cardiac tamponade
- Pericardial constriction

TABLE 30-5 Suggested Natriuretic Peptide Cut-Points in Heart Failure

	CUTOFF VALUE	SENSITIVITY	SPECIFICITY	POSITIVE PREDICTIVE VALUE	NEGATIVE PREDICTIVE VALUE
To Exclude Acutely Deco					
BNP NT-proBNP MR-proANP	<30-50 pg/mL <300 pg/mL <57 pmol/L	97% 99% 98%	* * *	* * *	96% 99% 97%
To Identify Acutely Deco					
Single Cutoff Point Strat					
BNP NT-proBNP MR-proANP	<100 pg/mL <900 pg/mL <127 pmol/L	90% 90% 87%	76% 85% 79%	79% 76% 67%	89% 94% 93%
Multiple Cut-Point Strate					
BNP, "gray zone" approach	<100 pg/mL to exclude 100-400 pg/mL, "gray zone" >400 pg/mL, to rule in	90% * 63%	73% * 91%	75% * 86%	90% * 74%
NT-proBNP, "age- stratified" approach	<450 pg/mL for age <50 years <900 pg/mL for age 50-75 years <1800 pg/mL for age >75 years	90%	84%	88%	66%
MR-proANP, "age- stratified" approach	<104 pmol/L for age <65 years 214 pmol/L for age ≥65 years	82%	86%	75%	91%
Outpatient Application					
BNP	20 pg/mL (asymptomatic) or 40 pg/mL (symptomatic)	*	*	*	96%
NT-proBNP, "age- stratified" approaches	<125 pg/mL for age <75 years <450 pg/mL for age ≥75 years or	*	*	*	98% 91%
	<50 pg/mL for age <50 years <75 pg/mL for age 50-75 years <250 pg/mL for age >75 years	* * *	* * *	* * *	98% 98% 93%

NT-pro BNP are very useful

NT-pro BNP is very useful BUT

NT-pro BNP is very useful BUT Still not available in HA

Take Home Messages

- HFrEF Vs HFpEF
- NYHA Classes and stages (+/-INTERMAC)
- Clinical exam provides essential information on haemodynamic status
- Identifiable causes in dilated, hypertrophic or restrictive morphologies