Prosthetic Valvular Disease Hong Kong Core Cardiology Certificate

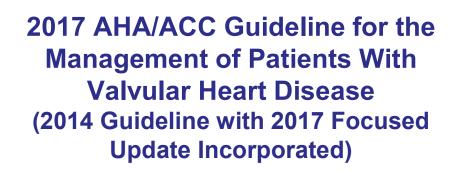
Course (Module 3) Sunday April 07, 2019

Society or contraction

Gabriel Yip MD, FRCP, FHKCP, FHKAM(Med) FACC Honorary Treasurer, Hong Kong Society of Congenital & Structural Heart Disease (HKCASH).

Presenter Disclosure Information

Gabriel W. Yip, M.D.


Prosthetic Valvular Disease

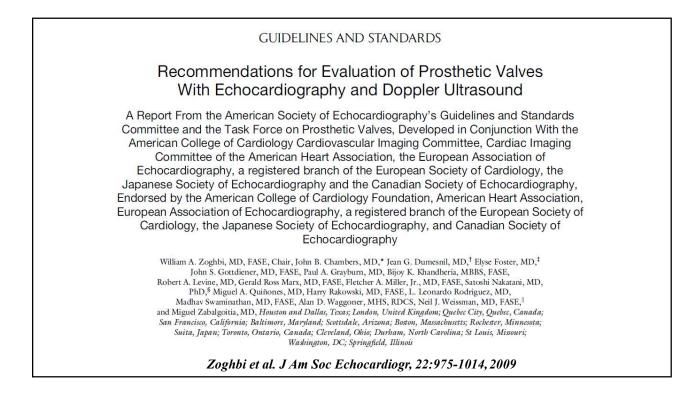
DISCLOSURE INFORMATION:

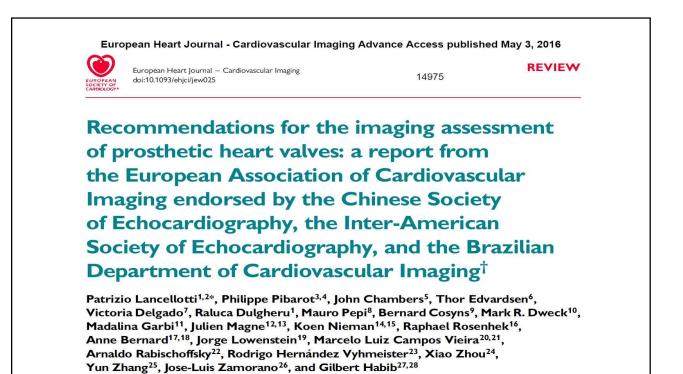
The following relationships exist related to this presentation: **None**

Overview

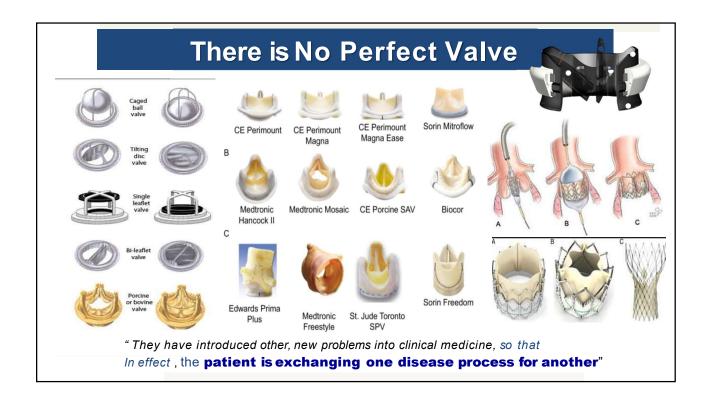
- Selection & Consideration
- Anti-coagulation and Thromboembolic Complications
- Prosthetic Valve Dysfunction and Assessment
- Summary of key points.

Developed in Collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons


© American College of Cardiology Foundation and American Heart Association



Helping Cardiovascular Professionals Learn. Advance. Heal.



GUIDELINES AND STANDARDS

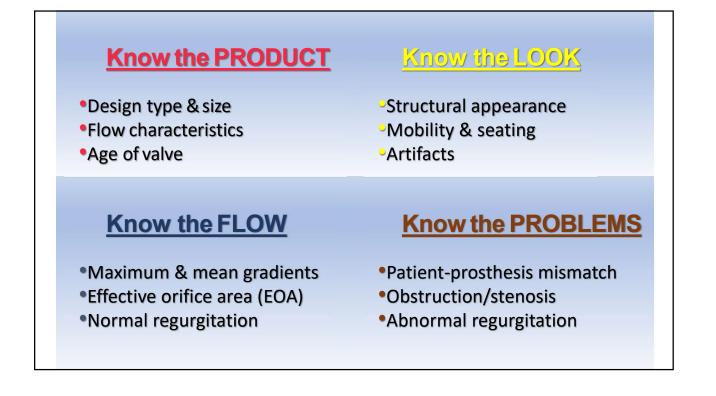
Guidelines for the Evaluation of Valvular Regurgitation After Percutaneous Valve Repair or Replacement A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance

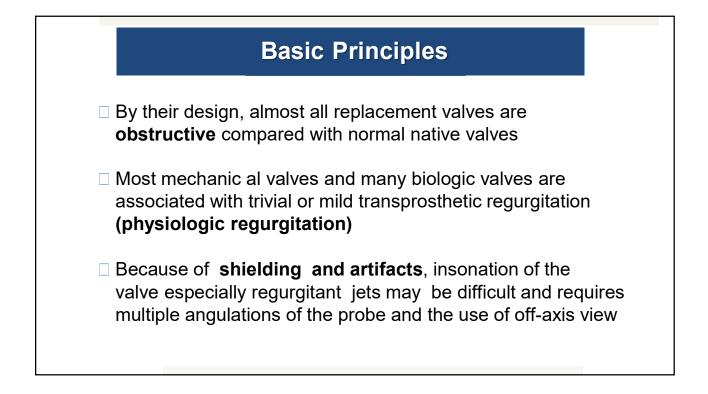
 William A. Zoghbi, MD, FASE, (Chair), Federico M. Asch, MD, FASE, Charles Bruce, MBChB, FASE, Linda D. Gillam, MD, MPH, FASE, Paul A. Grayburn, MD, FASE, Rebecca T. Hahn, MD, FASE, Ignacio Inglessis, MD, Ashequl M. Islam, MD, MPH, FSCAI, Stamatios Lerakis, MD, FASE, Stephen H. Little, MD, FASE, Robert J. Siegel, MD, FASE, Nikolaos Skubas, MD, DSc, FASE,
 Timothy C. Slesnick, MD, FASE, William J. Stewart, MD, FASE, Paaladinesh Thavendiranathan, MD, MSc, FASE, Neil J. Weissman, MD, FASE, Satoshi Yasukochi, MD, JCC, SJSUM, and Karen G. Zimmerman, BS, ACS, RDCS, RVT, FASE, Houston and Dallas, Texas; Washington, District of Columbia; Rochester, Minnesota; Morristown, New Jersey; New York, New York; Boston and Springfield, Massachusetts; Los Angeles, California; Cleveland, Ohio; Atlanta, Georgia; Toronto, Ontario, Canada; Nagano, Japan; Morgantown, West Virginia https://doi.org/10.1016/j.echo.2019.01.003

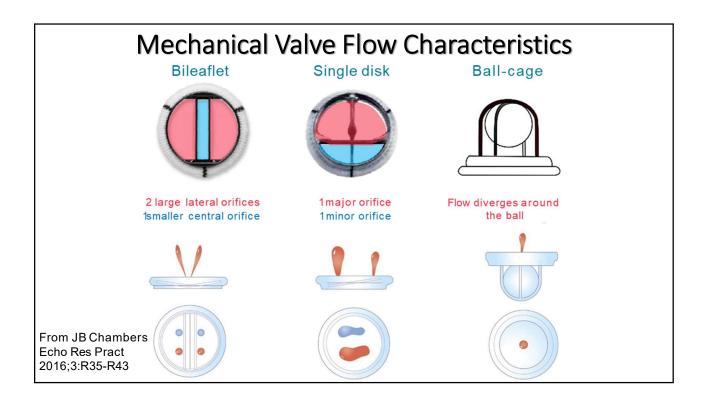
Factors to be Considered while Selecting a Prosthetic Heart Valve

- Age of the patient
- Comorbid conditions (Cardiac and Non-cardiac)
- Expected lifespan of the patient
- Long term outcome with the prosthetic heart valves
- Patient wishes
- Skill of the surgeon
- Women of child-bearing age

COR	LOE	2017 AHA/ACC Recommendations for Intervention of Prosthetic Valves
I	С	A bioprosthesis is recommended in patients of any age for whom anticoagulant therapy is contraindicated, cannot be managed appropriately, or is not desired.
lla	B-NR	An aortic or mitral mechanical prosthesis is reasonable for patients aged <50 years who do not have a contraindication to anticoagulation.
lla	B-NR	For patients aged between 50 and 70 years, it is reasonable to individualize the choice of either a mechanical or bioprosthetic valve prosthesis on the basis of individual patient factors and preferences, after full discussion of the trade-offs involved.
lla	В	A bioprosthesis is reasonable for patients aged >70 years.
llb	С	Replacement of the aortic valve by a pulmonary autograft (the Ross procedure), when performed by an experienced surgeon, may be considered for young patients when VKA anticoagulation is contraindicated or undesirable.

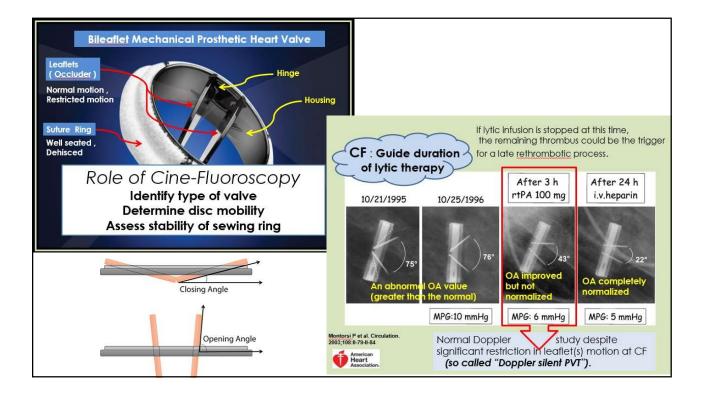

COR	LOE	2017 AHA/ACC Recommendations for Antithrombotic Therapy in PHV
I	A	Anticoagulation with a VKA and INR monitoring is recommended in patients with a mechanical prosthetic valve.
I	В	Anticoagulation with a VKA to achieve an INR of 2.5 is recommended for patients with a mechanical bileaflet or current-generation single-tilting disc AVR and no risk factors for thromboembolism.
I	В	Anticoagulation with a VKA is indicated to achieve an INR of 3.0 in patients with a mechanical AVR and additional risk factors for thromboembolic events (AF, previous thromboembolism, LV dysfunction, or hypercoagulable conditions) or an older-generation mechanical AVR (such as ball-in-cage).
I	В	Anticoagulation with a VKA is indicated to achieve an INR of 3.0 in patients with a mechanical MVR.
I	А	Aspirin 75 mg to 100 mg daily is recommended in addition to anticoagulation with a VKA in patients with a mechanical valve prosthesis.

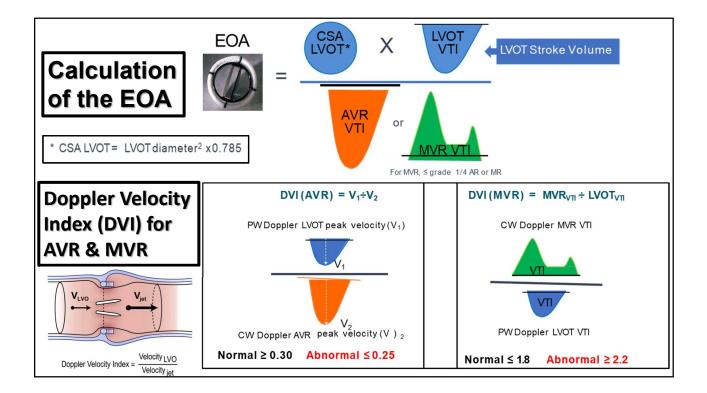

COR	LOE	2017 AHA/ACC Recommendations for Antithrombotic Therapy in Bioprosthetic Heart Valves			
lla	В	Aspirin 75 mg to 100 mg per day is reasonable in all patients with a bioprosthetic aortic or mitral valve.			
lla	B-NR	Anticoagulation with a VKA to achieve an INR of 2.5 is reasonable for at least 3 months and for as long as 6 months after surgical bioprosthetic MVR or AVR in patients at low risk of bleeding.			
llb	B-R	A lower target INR of 1.5 to 2.0 may be reasonable in patients with mechanical On-X AVR and no thromboembolic risk factors.			
llb	B-NR	Anticoagulation with a VKA to achieve an INR of 2.5 may be reasonable for at least 3 months after TAVR in patients at low risk of bleeding.			
IIb	С	Clopidogrel 75 mg daily may be reasonable for the first 6 months after TAVR in addition to lifelong aspirin 75 mg to 100 mg daily.			

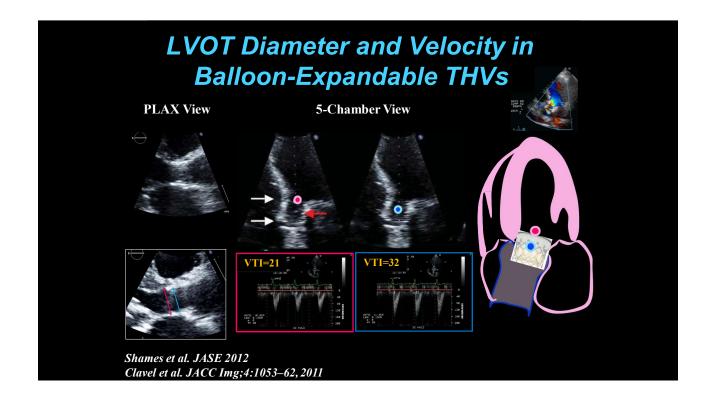

COR LOE 2017 AHA/ACC Recommendations of Bridging Therapy for PHV

Although the BRIDGE (Bridging Anticoagulation in Patients who Require Temporary Interruption of Warfarin Therapy for Elective Invasive Procedure or Surgery) trial excluded MHV, this randomized trial assigned patients on chronic anticoagulation to receive low-molecular-weight heparin versus placebo for bridging before elective surgery and found no significant difference in arterial thromboembolism, but a significant increase in major bleeding (relative risk, 0.41; CI, 0.20–0.78). This study raised concerns that by bridging with overlapping anticoagulation agents can increase bleeding risk without reducing risk of thromboembolism.

	C-LD	Bridging anticoagulation therapy during the time interval when the INR is subtherapeutic preoperatively is reasonable on an individualized basis, with the risks of bleeding weighed against the benefits of
lla		
na		thromboembolism prevention, for patients who are undergoing invasive
		or surgical procedures with a (1) mechanical AVR and any thromboembolic
		risk factor, (2) older-generation mechanical AVR, or (3) mechanical MVR.

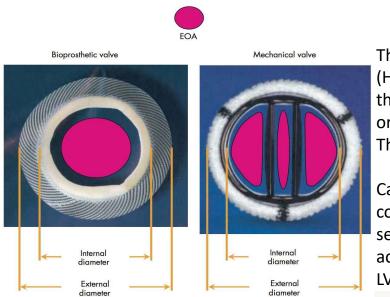






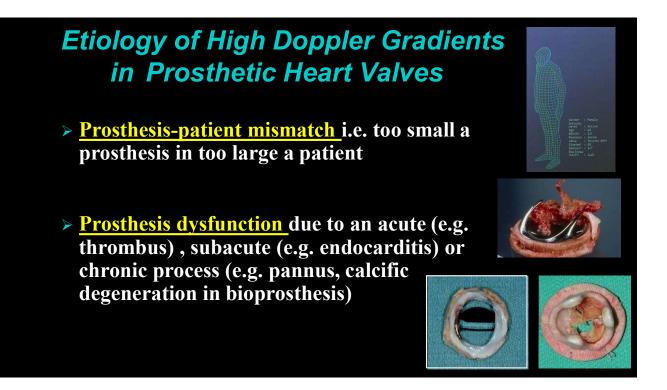
Valve Design Bileaflet Mechanical Valves							
Valve	Opening angle	Closing angle					
CarboMedics	780 780	250 250					
ATS Open Pivot	850, 850	250 250					
On-X	90%	400 400					

	Know the Flow (Simplified)							
Valve	Parameter	Normal	ABNORMAL					
AVR	Peak velocity Mean gradient Doppler velocity Index (DVI) Effective orifice area (EOA) Contour of the jet velocity Acceleration time (AT)	< 3 m/s < 20 mmHg ≥ 0.30 > 1.2 cm ² Triangular, early p < 80 ms	PEAK AV velocity >3 m/s and/or mean AVG ≥20 mmHg					
MVR	Peak velocity Mean gradient Doppler velocity Index (DVI) Effective orifice area (EOA) Pressure half-time (PHT)	< 1.9m/s ≤5mmHg < 2.2 ≥ 2.0 cm ² < 130ms	Peak mitral early diastolic velocity ≥1.9 m/s and/or mean MVG ≥6 mmHg.					
23 mm ATS AVR		 Vmax = 2.4 m/s mPG = 13 mmHg DVI = 0.33 EOA = 1.5 cm² 	Baseline Study Early Postop/ Post-procedure Strongly Recommended					
31 mm ATS AVR		• mPG = 4 mmHg • DVI = 1.5 • EOA = 2.8 cm ² • PHT = 95 ms	Zoghbi WA, et al. JASE. 2009 Sep 22(9):975-1014					



AORTIC VALVES	SIZE (mm)	PEAK GRADIENT (mm Hg)	MEAN GRADIENT (mm Hg)	EFFECTIVE ORIFICE AREA (cm²)
Carpentier-Edwards Pericardial Stented bovine pericardial	19 21 23 25	32.1 ± 3.4 25.7 ± 9.9 21.7 ± 8.6 16.5 ± 5.4	24.2 ± 8.6 20.3 ± 9.1 13.0 ± 5.3 9.0 ± 2.3	$\begin{array}{c} 1.2 \pm 0.3 \\ 1.5 \pm 0.4 \\ 1.8 \pm 0.3 \end{array}$
Carpentier-Edwards Standard Stented porcine	19 21 23 25 27 29	$\begin{array}{c} 43.5 \pm 12.7 \\ 27.7 \pm 7.6 \\ 28.9 \pm 7.5 \\ 24.0 \pm 7.1 \\ 22.1 \pm 8.2 \end{array}$	25.6 ± 8.0 17.3 ± 6.2 16.1 ± 6.2 12.9 ± 4.6 12.1 ± 5.5 9.9 ± 2.9	$\begin{array}{c} 0.9 \pm 0.2 \\ 1.5 \pm 0.3 \\ 1.7 \pm 0.5 \\ 1.9 \pm 0.5 \\ 2.3 \pm 0.6 \\ 2.8 \pm 0.5 \end{array}$
Hancock Stented porcine	21 23 25	$\begin{array}{c} 18.0 \pm 6.0 \\ 16.0 \pm 2.0 \\ 15.0 \pm 3.0 \end{array}$	12.0 ± 2.0 11.0 ± 2.0 10.0 ± 3.0	
Hancock II Stented porcine	21 23 25 29	34.0 ± 13.0 22.0 ± 5.3 16.2 ± 1.5	$\begin{array}{c} 14.8 \pm 4.1 \\ 16.6 \pm 8.5 \\ 10.8 \pm 2.8 \\ 8.2 \pm 1.7 \end{array}$	$\begin{array}{c} 1.3 \pm 0.4 \\ 1.3 \pm 0.4 \\ 1.6 \pm 0.4 \\ 1.6 \pm 0.2 \end{array}$
Medtronic Mosaic Stented porcine	21 23 25 27 29	23.8 ± 11.0 22.5 ± 10.0	14.2 ± 5.0 13.7 ± 4.8 11.7 ± 5.1 10.4 ± 4.3 11.1 ± 4.3	$\begin{array}{c} 1.4 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.8 \pm 0.5 \\ 1.9 \pm 0.1 \\ 2.1 \pm 0.2 \end{array}$
Medtronic-Hall Single tilting disc	20 21 23 25 27	$\begin{array}{c} 34.4 \pm 13.1 \\ 26.9 \pm 10.5 \\ 26.9 \pm 8.9 \\ 17.1 \pm 7.0 \\ 18.9 \pm 9.7 \end{array}$	$\begin{array}{c} 17.1 \pm 5.3 \\ 14.1 \pm 5.9 \\ 13.5 \pm 4.8 \\ 9.5 \pm 4.3 \\ 8.7 \pm 5.6 \end{array}$	$\begin{array}{c} 1.2 \pm 0.5 \\ 1.1 \pm 0.2 \\ 1.4 \pm 0.4 \\ 1.5 \pm 0.5 \\ 1.9 \pm 0.2 \end{array}$
St. Jude Medical Standard Sileaflet	19 21 23 25 27 29	42.0 ± 10.0 25.7 ± 9.5 21.8 ± 7.5 18.9 ± 7.3 13.7 ± 4.2 13.5 ± 5.8	$24.5 \pm 5.8 \\ 15.2 \pm 5.0 \\ 13.4 \pm 5.6 \\ 11.0 \pm 5.3 \\ 8.4 \pm 3.4 \\ 7.0 \pm 1.7 \\ \end{cases}$	$\begin{array}{c} 1.5 \pm 0.1 \\ 1.4 \pm 0.4 \\ 1.6 \pm 0.4 \\ 1.9 \pm 0.5 \\ 2.5 \pm 0.4 \\ 2.8 \pm 0.5 \end{array}$

Normal	Val	ues f	or Im	planted	Mitral Va	alves
MITRAL VALVES	SIZE (mm)	GRADIENT (mm Hg)	GRADIENT (mm Hg)	PEAK VELOCITY (m/sec)	PRESSURE HALF-TIME (msec)	ORIFICE AREA (cm²)
Carpentier-Edwards Stented bioprosthesis	27 29 31 33		6 ± 2 4.7 ± 2 4.4 ± 2 6 ± 3	$\begin{array}{c} 1.7 \pm 0.3 \\ 1.76 \pm 0.27 \\ 1.54 \pm 0.15 \end{array}$	98 ± 28 92 ± 14 92 ± 19 93 ± 12	
Carpentier-Edwards Pericardial Stented bioprosthesis	27 29 31 33		3.6 5.25 ± 2.36 4.05 ± 0.83 1	1.6 1.67 ± 0.3 1.53 ± 0.1 0.8	100 110 ± 15 90 ± 11 80	
Hancock I or not specified Stented bioprosthesis	27 29 31 33	10 ± 4 7 ± 3 4 ± 0.86 3 ± 2	5 ± 2 2.46 ± 0.79 4.86 ± 1.69 3.87 ± 2		115 ± 20 95 ± 17 90 ± 12	$\begin{array}{c} 1.3 \pm 0.8 \\ 1.5 \pm 0.2 \\ 1.6 \pm 0.2 \\ 1.9 \pm 0.2 \end{array}$
Hancock II Stented bioprosthesis	27 29 31 33					$\begin{array}{c} 2.21 \pm 0.14 \\ 2.77 \pm 0.11 \\ 2.84 \pm 0.1 \\ 3.15 \pm 0.22 \end{array}$
Medtronic-Hall Tilting disc	27 29 31			1.4 1.57 ± 0.1 1.45 ± 0.12	78 69 ± 15 77 ± 17	
St. Jude Medical Bileaflet	23 25 27 29	11 ± 4 10 ± 3	4 2.5 ± 1 5 ± 1.82 4.15 ± 1.8	1.5 1.34 ± 1.13 1.61 ± 0.29 1.57 ± 0.29	160 75 ± 4 75 ± 10 85 ± 10	1 1.35 ± 0.17 1.67 ± 0.17 1.75 ± 0.24


Valve Size is NOT equal to EOA or Geometric OA

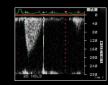
The effective orifice area(EOA) (Hemodynamic orifice) is **NOT** the same as the Geometric orifice area (valve opening area). The former is up to 29% smaller.

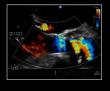
Calculating the EOA by the continuity equation presents several challenges, including accurate measurement of the LVOT diameter.

Know the Potential Problems							
		0			She was		
Path	Thrombosis	Pannus	Structural Degeneration	Endocarditis	РРМ	Mal-deployment (TAVR)	
Type of dysfunction	Obstruction	Obstruction	Stenosis / Regurgitation	Regurgitation / Shunts / stenosis	Non- structural dysfunction	Regurgitation/ Stenosis	
Clinical presentation	Echo CHF Shock	Echo CHF Shock	Echo CHF Shock	Echo CHF Shock Sepsis	Echo CHF	Echo CHF Shock	

Pannus versus Thrombus

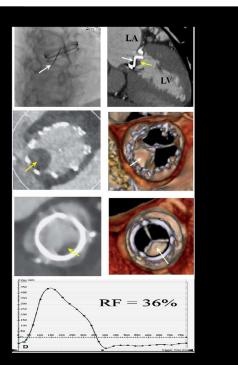
Parameters	Thrombus	Pannus					
Clinical	 shorter (≈ 2months) Symptom duration before reoperation shorter (< 1month) Inadequate anticoagulation * 	 Time from valve surgery to valve malfunction longer (> 12months) Symptom duration before reoperation longer (≈ 10months) Adequate anticoagulation* 					
Echocardiography	 Larger Soft tissue appearance (similar to myocardium) Mobile Extension of mass beyond limits of prosthetic valve ring to adjacent cardiac structures More common in MVR than AVR 	 Smaller Echo dense appearance Firmly fixed Annular location (along valvular plane) More common in AVR than MVR 					
* Adequate anticoagulation defined as International Normalized Ratio (INR) ≥ 2.5 at the time of diagnosis Barbetseas J, et al. <i>J Am Coll Cardiol.</i> 1998 Nov;32(5):1410-7.							

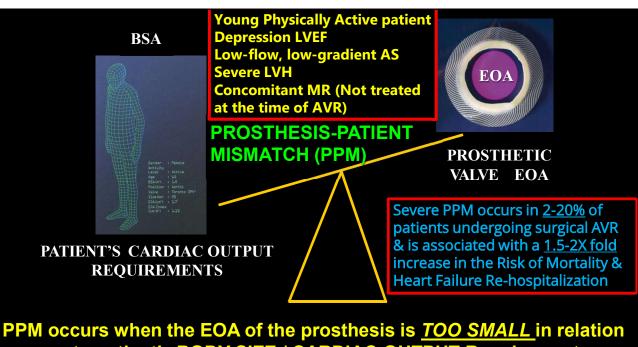

Doppler-Echo Evaluation of Prosthetic Valves

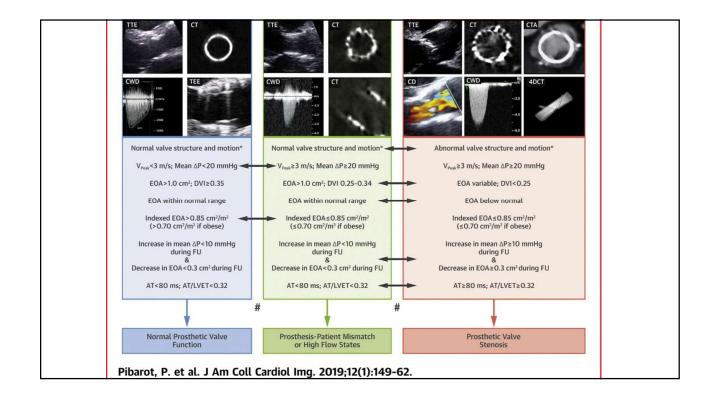

- Doppler-echocardiography is the primary imaging modality to evaluate prosthetic valve function
- > Structural evaluation (TTE and TEE)
 - > Valve position and shape
 - > Leaflet morphology and mobility
 - Paravalvular region

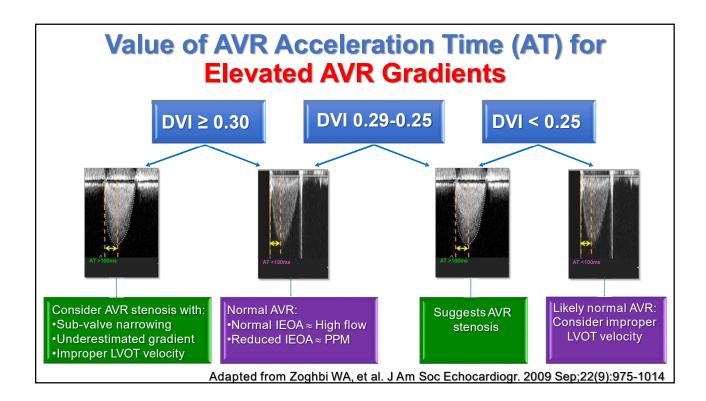
> Functional evaluation

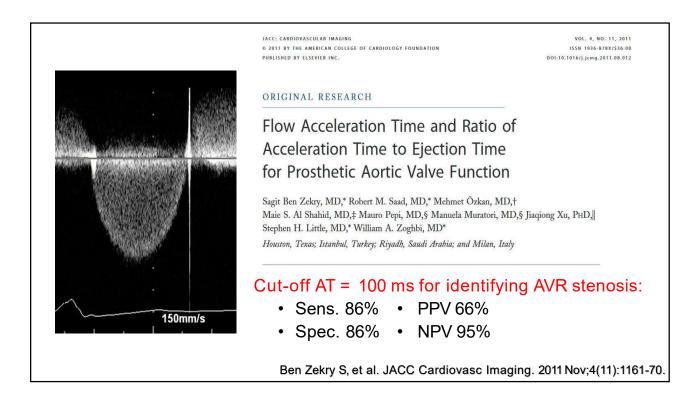
- > Transprosthetic gradients, EOA, and DVI
- > Localization (central vs. para) and degree of regurgitation
- > LV/RV size and function, Pulmonary Arterial Pressure



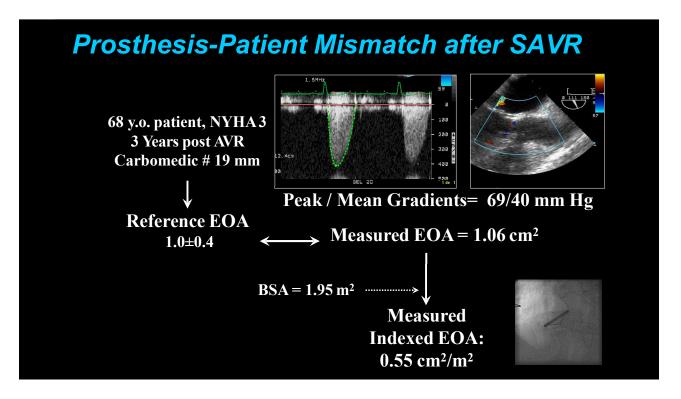


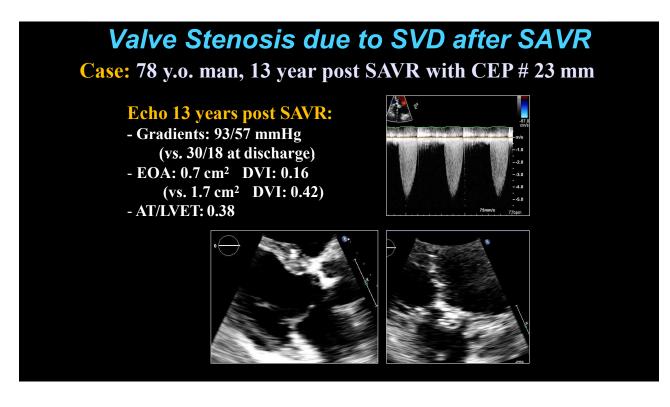

Non-Echo Imaging Modalities


- Not performed routinely for the evaluation of PHVs
- Can provide incremental information on valve integrity and valvular / paravalvular pathology
- Cinefluoroscopy: leaflet mobility of mechanical PHVs
- Cardiac CT: leaflet thickening / calcification, thrombus vs. pannus
- > CMR: quantitation of AR and MR
- » Nuclear imaging: PHVs endocarditis

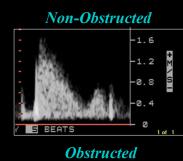


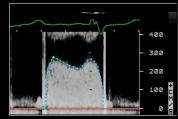
to patient's BODY SIZE / CARDIAC OUTPUT Requirements

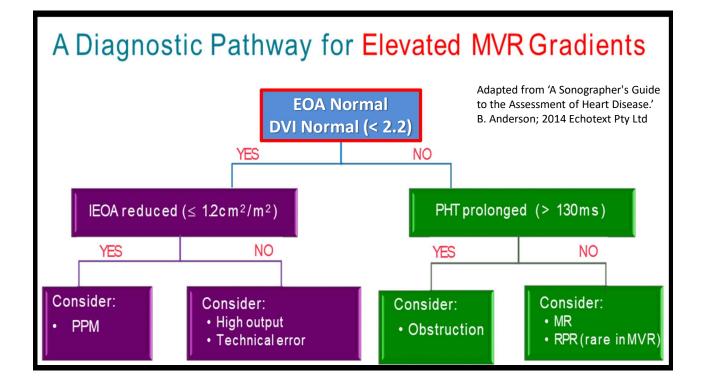




The Strategies to Prevent PPM at the time of Surgical AVR include: -


- Implanting a Newer Generation of PHV with <u>better</u> <u>hemodynamic performance & larger EOA</u>
- Enlarging the Aortic Root or annulus to accommodate a larger prosthetic valve; or
- Performing Transcatheter AVR rather than Surgical AVR.
- Fracture bioprosthesis stent (For valve-in-valve)





Doppler-Echo Evaluation of Mitral Prosthesis - Specifics

- EOA calculated using continuity equation as follows : EOA= SV lvot / VTI mvp (Not valid if significant aortic or mitral regurgitation)
- > Doppler Velocity Index: VTI mvp / VTI lvot
- Pressure half-time <u>NOT valid</u> to calculate EOA (grossly overestimates) but may be useful for serial comparisons if delayed

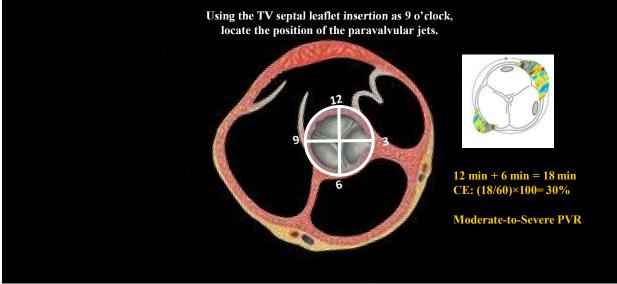
Criteria for Definition of Mitral Prosthesis-Patient Mismatch

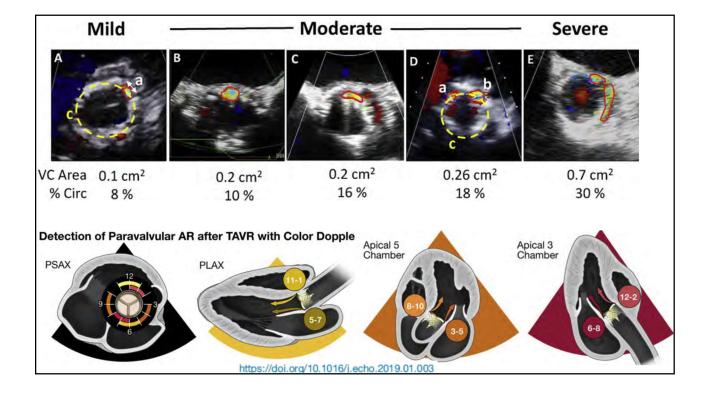
PPM is defined as: normal EOA but small indexed EOA

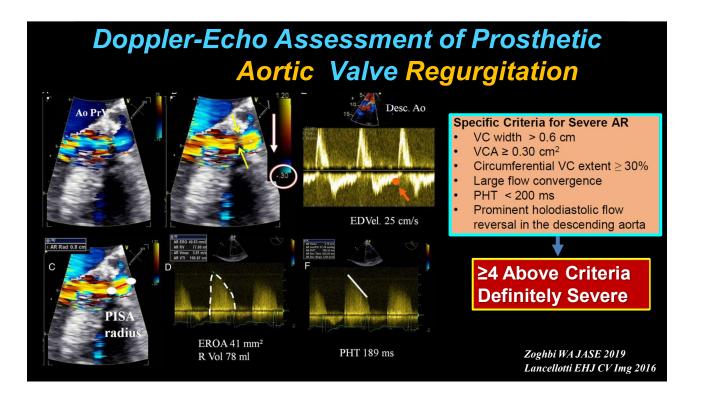
	None/Mild	Moderate	Severe
Valve structure and motion	Usually normal	Usually normal	Usually normal
Difference (Normal reference EOA – Measured EOA) (cm ²)	<0.30	>0.30	>0.30
Indexed EOA (cm ² /m ²)	>1.2	0.9-1.2	<0.90
Indexed EOA (cm ² /m ²) in obese patients (BMI ≥30 kg/m ²)	>1.0	1.0-0.75	<0.75
		I ancellotti FHI C	V Ima 2016

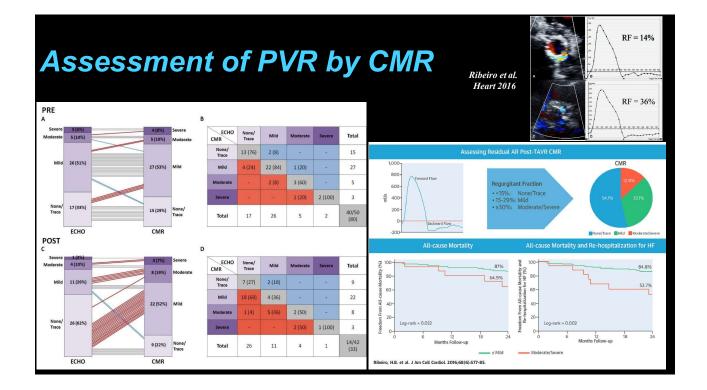
Doppler-Echo Criteria to Assess the Severity of Prosthetic Mitral Valve Stenosis

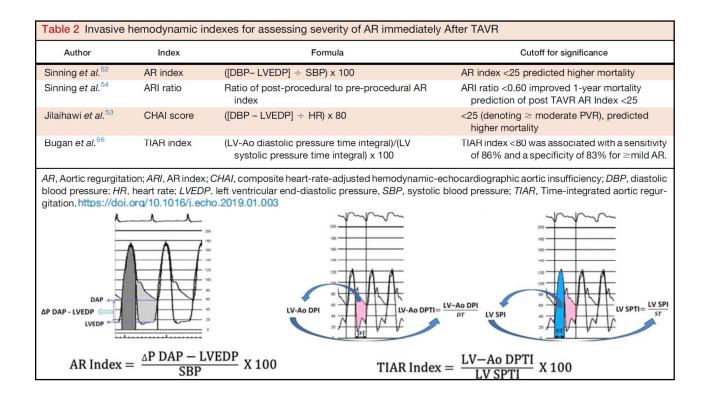
	Normal	Possible	Significant
		Stenosis	Stenosis
2D/3D TTE / TEE / Cinefluoroscopy /			
Valve structure / leaflet mobility	Normal	Often abnormal	Abnormal
Doppler quantitative parameters		abilormai	
Peak velocity (m/s)	<1.9	1.9-2.5	≥2.5
Mean gradient (mmHg)	≤5	6-10	≥10
Doppler velocity index	<2.2	2.2-2.5	>2.5
Effective orifice area (cm ²)	≥2	1-2	<1
Difference (Normal EOA - Measured EOA)	<0.30	0.30-0.60	>0.60
Doppler semi-quantitative parameter	'S		
Pressure half time (ms)	<130	130-200	>200
Changes in echo parameters during Fl	U		
Increase in mean gradient (mmHg)	<5	5-9	≥10
+ concomitant decrease in EOA			
			Lancellotti et al. EHJ CV Img 2010

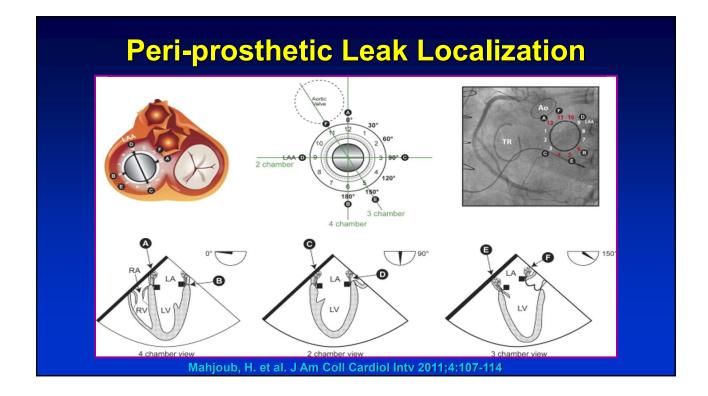

Doppler-Echo Evaluation of Prosthetic Valve Regurgitation

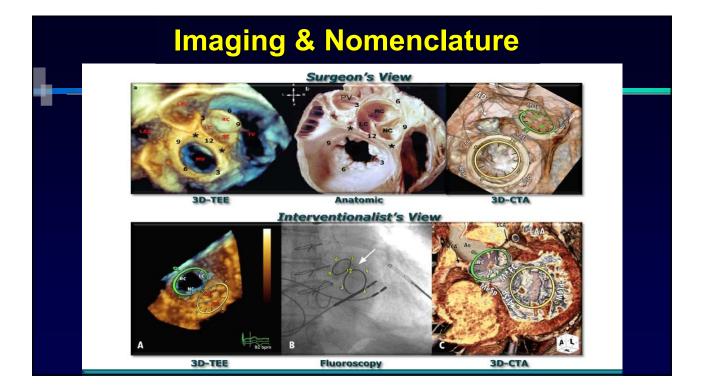

- Mild regurgitations, central or paravalvular are frequent, sometimes transient and rarely progressive
- Mechanical prostheses usually show small regurgitation due to normal closing volume
- Mitral regurgitation may be underestimated by TTE due to acoustic shadowing
- > If significant regurgitation suspected, look for underlying pathology and proceed to TEE

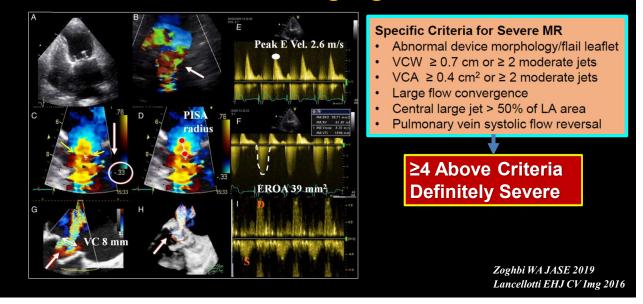

Doppler-Echo Criteria to Assess the Severity of Prosthetic Aortic Valve Regurgitation


	Mild	Moderate	Severe
2D/3D TTE / TEE / Cinefluoroscopy / CT			
Valve structure / leaflet mobility	Normal	Often abnormal	Abnormal
Doppler qualitative or semi-quantitative parameter	s		
Vena contracta width	<3	3-6	>6
Jet width in central jets (% LVOT diameter)	≤25	26-64	≥65
Pressure half time (ms)	Slow >500	200-500	Steep <200
Diastolic flow reversal in descending aorta	Absent- brief	Intermediate	Holodiastolic
Circumferential extent (paravalvular) (%)	<10	10-29	≥30
Doppler / CMR quantitative parameters			
Regurgitant volume (ml)	<30	30-59	≥60
Regurgitant fraction (%)	<30	30-49	≥50
		Zoghbi JASE 2009 Lancellotti EHJ C	


Semi-Quantitation and Location of Paravalvular Regurgitation on PSAX






Doppler-Echo Criteria to Assess the Severity of Prosthetic Mitral Valve Regurgitation

	Mild	Moderate	Severe	
2D/3D TTE / TEE / Cinefluoroscopy / CT				
Valve structure / leaflet mobility	Normal	Often abnormal	Abnormal	
Doppler qualitative or semi-quantitative parameters				
Vena contracta width	<3	3-6	>6	
Mitral E Velocity	Variable	Variable	≥65	
Doppler velocity index	<2.2	2.2-2.5	>2.5	
CW Doppler signal of MRjet	Faint Parabolic	Dense Parabolic	Dense Triangular	
Circumferential extent (paravalvular) (%)	<10	10-29	≥30	
Doppler quantitative parameters				
Regurgitant volume (ml)	<30	30-59	≥60	
Regurgitant fraction (%)	<30	30-49	≥50	
	Zoghbi JASE 2009 Lancellotti EHJ CV Img 2016			

Doppler-Echo Assessment of Prosthetic Mitral Valve Regurgitation

Conclusions

- Patients between aged 50-70 can now opt for either biological or mechanical PHV.
- Bridging AC therapy is reasonable in older mechanical AVR, AVR with 1 thrombo-embolic risk factor (RF) & mechanical MVR.
- INR 2.5 for metallic AVR and 3.0 for metallic AVR with ≥1 RF.
- INR 3.0 for metallic MVR
- Know your PHV: Products, Look, Flow, potential Problems.
- Multi-modality imaging with multi-parameter integrative approach is required for problematic metallic PHVs. Record BP, HR, BMI
- PPM Indexed EOA (↓) & DVI (>0.25 for AVR; <2.2 for MVR)
- Indexed EOA is the only parameter shown to have any correlation with post-op gradients &/or outcomes in PPM.