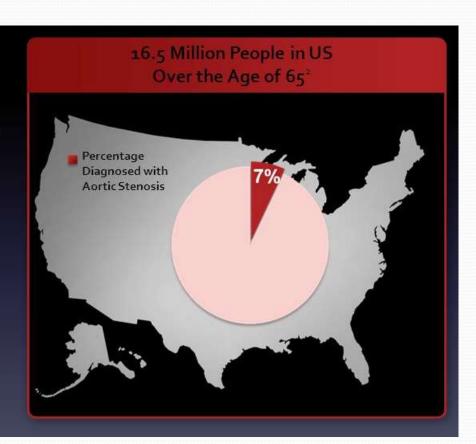
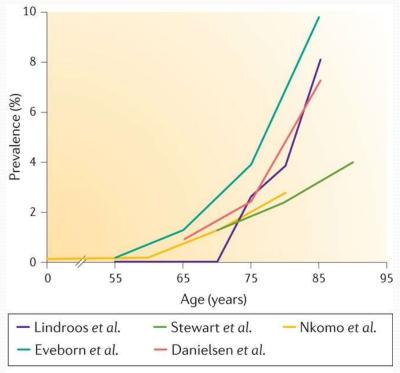
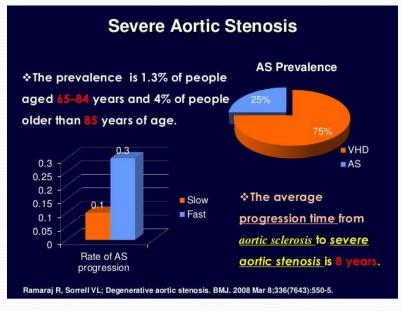
Aortic Stenosis

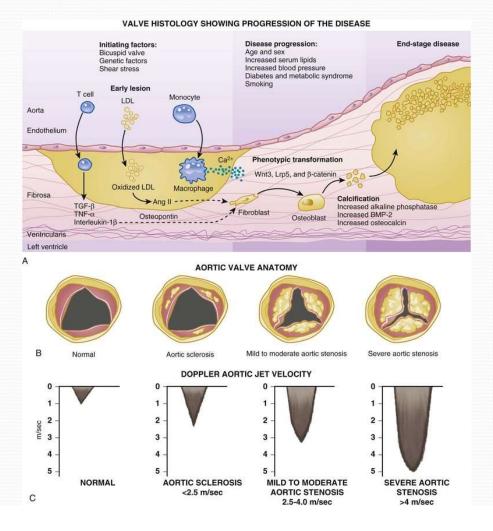
Hong Kong Core Cardiology Certificate Course (Module 3)

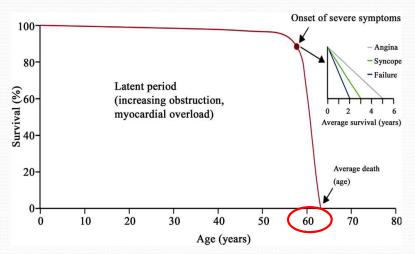

Dr Wong Chi Yuen Eric

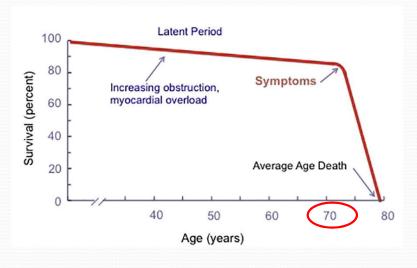

Associate Consultant
Division of Cardiology, Department of Medicine
Queen Elizabeth Hospital, Hong Kong


Prevalence

Aortic stenosis is estimated to be prevalent in up to 7% of the population over the age of 65°


It is more likely to affect men than women; 80% of adults with symptomatic aortic stenosis are male³




Pathophysiology

Natural History

- Asymptomatic for many years
- Symptoms develops with critically narrowed valve and LV dysfunction
 - Bicuspid 5th-6th decade
 - Degenerative 7th-8th decade
- Classical triad
 - Angina
 - Syncope
 - Heart failure
 - (Sudden death)

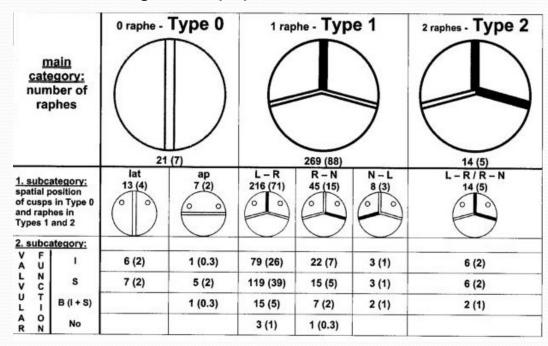
Aortic Stenosis - Causes

- Most common :-
 - Bicuspid aortic valve with calcification
 - Senile or Degenerative calcific AS
 - Rheumatic AS

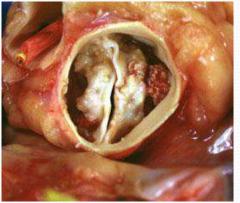
Echo remains a standard tool for diagnosis and severity assessment

Make a correct diagnosis first before sending a patient for a advanced / ultra-major procedure

General Approach by Echo

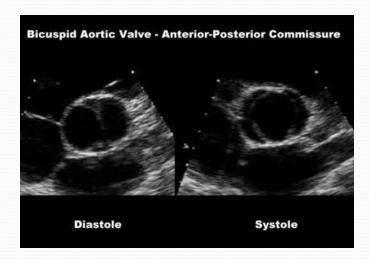

- Morphology
- Etiology
- Colour Doppler
- Quantitative assessment
- Effect on chamber size and function
- Put everything together and see if the parameters are concordant

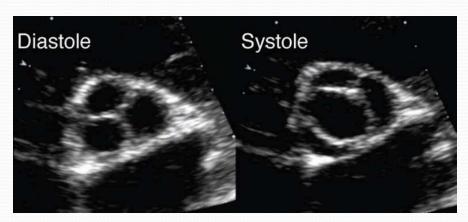
Anatomic Evaluation


- Combination of short and long axis images to identify
 - Number of leaflets
 - Describe leaf mobility, thickness, calcification
- Combination of imaging and Doppler allows the determination of the level of obstruction; sub-valvular, valvular, or supra-valvular.

Bicuspid Aortic Valve

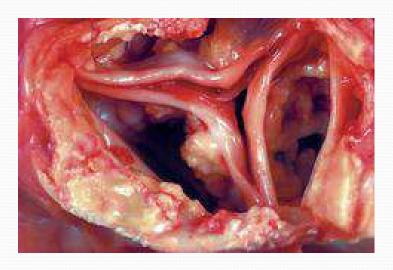
Commonest Congenital Abnormality ~ 2% in general population

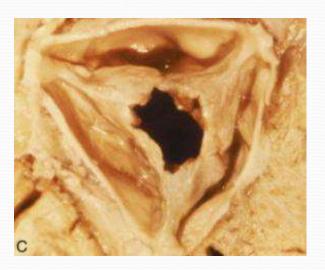



- Type 1 most common
 - Fusion of the right and left coronary cusps (80%)
 - Fusion of the right and non-coronary cusps(15%)

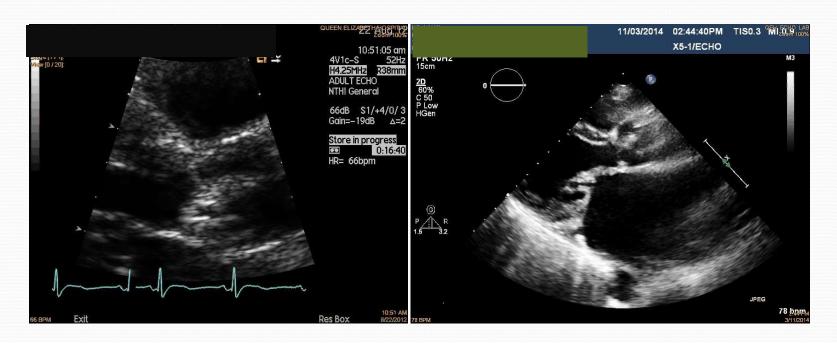
Bicuspid Aortic Valve (Pitfall 1)

- Two cusps are seen in systole with only two commissures framing an elliptical systolic orifice(the fish mouth appearance).
- Diastolic images may mimic a tricuspid valve when a raphe is present.




Bicuspid Aortic Valve Type 0

Calcific vs. Rheumatic Aortic Stenosis



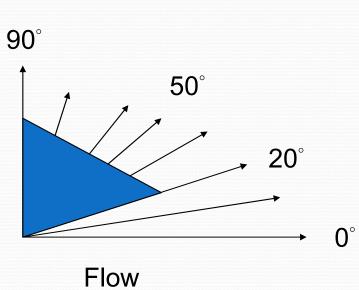
- Nodular calcific masses on aortic side of cusps
- No commissural fusion
- Free edges of cusps are not involved
- Stellate-shaped systolic orifice

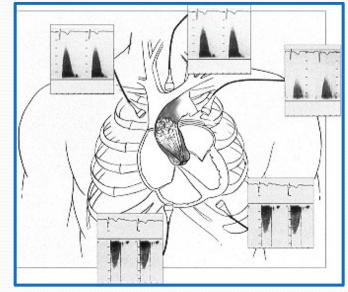
- Commissural fusion
- Triangular systolic orifice
- Thickening +/- calcification
- Accompanied by rheumatic mitral valve changes

Calcific vs. Rheumatic Aortic Stenosis (Pitfall 2)

Doppler Assessment of AS

- The primary haemodynamic parameters recommended
 - Peak transvalvular velocity
 - Mean transvalvular gradient
 - Valve area by continuity equation

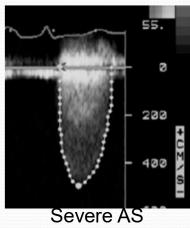

Peak Transvalvular Velocity Peak/Mean Gradient

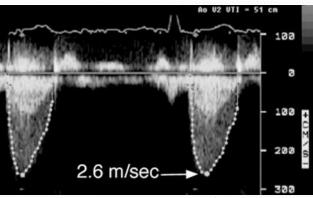

- Continuous-wave Doppler ultrasound
- Multiple acoustic windows
 - Apical and suprasternal or right parasternal most frequently yield the highest velocity
 - rarely subcostal or supraclavicular windows may be required
- The peak gradient is calculated from maximum velocity by Bernoulli equation
 - $\Delta P \max = 4v^2 \max$
- The mean gradient is calculated by averaging the instantaneous gradients over the ejection period

Doppler Angle (Pitfall 3)

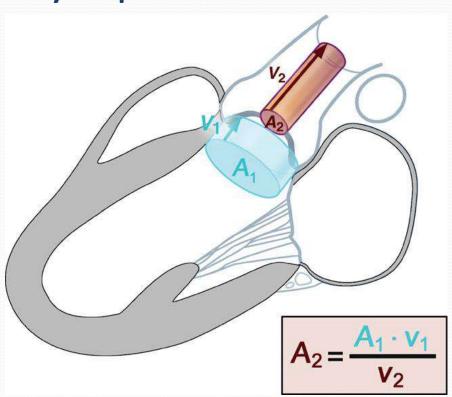
GOAL: Parallel to flow

As angle increases, velocity underestimated


~20% cases peak velocity are not obtained from usual apical windows


Non-imaging probe (CW only)

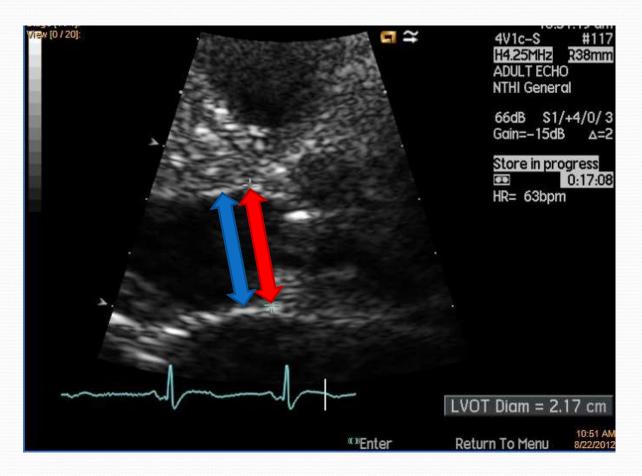
Shape of CW Doppler envelope


- Helpful in distinguishing the level and severity of obstruction.
- With severe obstruction, maximum velocity occurs later in systole and the curve is more rounded in shape
- With mild obstruction, the peak is in early systole with a triangular shape of the velocity curve

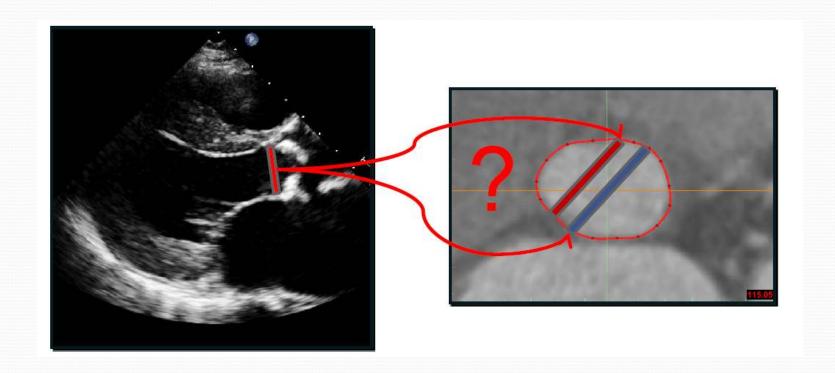
Non-severe AS

Aortic Valve Area Continuity Equation

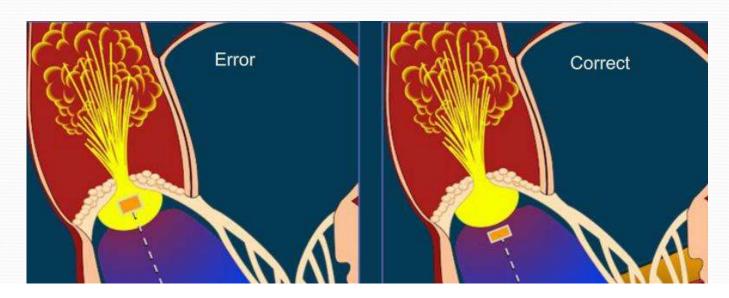
Aortic Valve Area


- Continuity equation concept that the stroke volume ejected through the LV outflow tract all passes through the stenotic orifice
- AVA = CSALVOT × VTILVOT / VTIAV
- Calculation of continuity-equation valve area requires three measurements
 - AS jet velocity time integral (VTI) by CWD
 - LVOT diameter for calculation of a circular CSA
 - LVOT VTI recorded with pulsed Doppler

LVOT diameter (Pitfall 4)


- LVOT diameter is measured from the inner edge to inner edge of the septal endocardium, and the anterior mitral leaflet in mid-systole
- ZOOM-IN, multiple measurement
- Largest source of error in AVA calculation (error would be squared)

Where to measure LVOT?

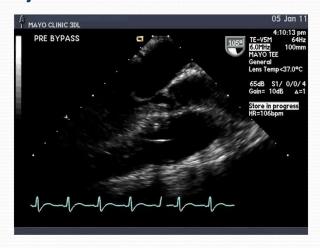


2D Echo LVOT measurement- Limitation

LVOT TVI measurement (Pitfall 5)

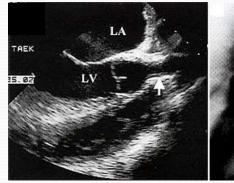
- When the PW sample volume is optimally positioned, the recording shows a smooth velocity curve with a well-defined peak.
- Measuring in flow acceleration zone would "overestimate"
 AVA

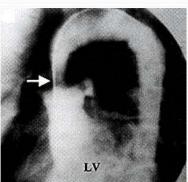
Conditions affecting flow (thus gradient) (Pitfall 6)

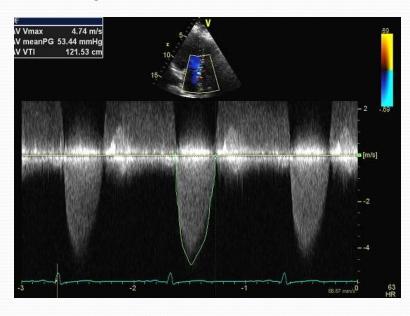

- Increase flow
 - Anaemia
 - Thyrotoxicosis
 - Fever
 - Severe AR

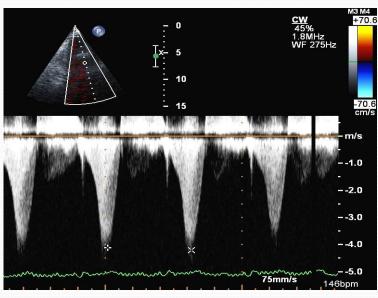
- Decrease flow
 - Poor LV
 - Severe MR
 - Severe MS
 - Severe TR

Check for proportionate change of LVOT TVI

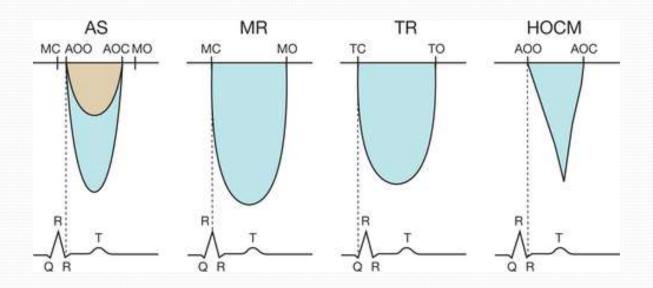

Do not just report gradient without calculating AVA


Failure to identify non-valvular stenotic lesions (Pitfall 7)





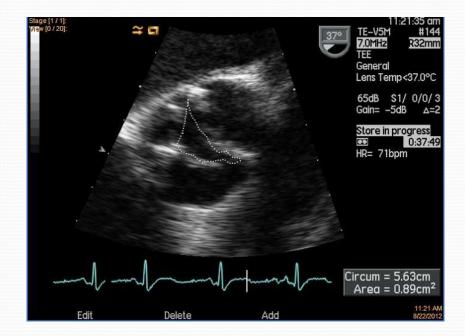
Fixed vs Dynamic Obstruction (Pitfall 8)



Parabolic

Late peaking

Mixing up AS and MR jet (Pitfall 9)


- AS jet narrower (excluded IVCT and IVRT)
- MR velocity always higher than AS
- Superimposed LVOT TVI signal

LVOT/AV TVI ratio

- Dimensionless index
- Error of LVOT diameter measurement "ignored"
- Suboptimal CW or PW beam angle "ignored"
- Effect of high flow "ignored"
- Provide an alternative if AVA difficult to assess
- < 0.25 severe aortic stenosis

Aortic valve area – Planimetry

- Planimetry may be an acceptable alternative when Doppler estimation of flow velocities is unreliable
- Planimetry may be inaccurate when valve calcification causes shadows or reverberations limiting identification of the orifice

How to (appear to) be smart when reading the Echo report without looking at the images?

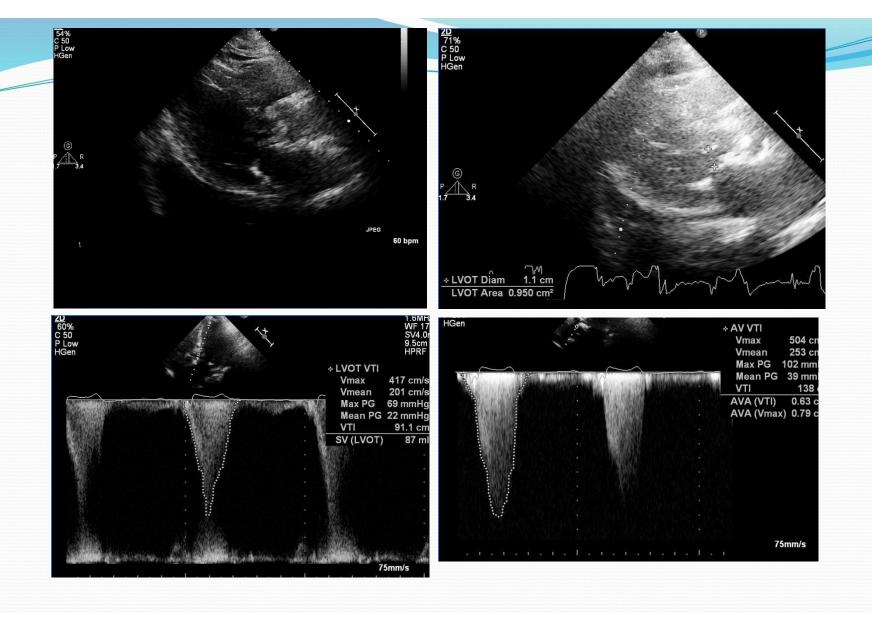
Case 1

- M/70, mildly thickened aortic valve with good mobility
 - LVEF 70%
 - AV mean gradient 5 mmHg
 - LVOT TVI: 25.8 cm
 - AV TVI: 23.6 cm
 - LVOT diameter : 2 cm
 - AVA 3.43 cm2 (by continuity equation)

Case 2

- M/80 s/p TAVI, FU at discharge and at 1 month
 - LVEF 60%, trivial PVL

Aortic Valve		
LVOT VTI:	35.23	cm
AV VTI:	44.58	cm
VTI ratio :	0.79	
AV peak systolic Gr.:		mm
AV mean systolic Gr. :	16.16	mm
AR vena contracta:		cm
AR pressure half time :		mse
Des Thor Ao Reversal :		cm
LVOT diameter :	2.2	cm
	LVOT VTI: AV VTI: VTI ratio: AV peak systolic Gr.: AV mean systolic Gr.: AR vena contracta: AR pressure half time: Des Thor Ao Reversal:	LVOT VTI: 35.23 AV VTI: 44.58 VTI ratio: 0.79 AV peak systolic Gr.: AV mean systolic Gr.: 16.16 AR vena contracta: AR pressure half time: Des Thor Ao Reversal:


AVA 3 cm2

Aortic Va	ilve		
LVOT VTI	:	22.3	cr
AV VTI:		51.7	cn
VTI ratio:		0.43	
AV peak s	systolic Gr.:	35	mi
AV mean	systolic Gr. :	16	mı
AR vena	contracta:		cn
AR pressu	re half time :		m
Des Thor	Ao Reversal:		cu
LVOT diar	meter:	2.15	СП

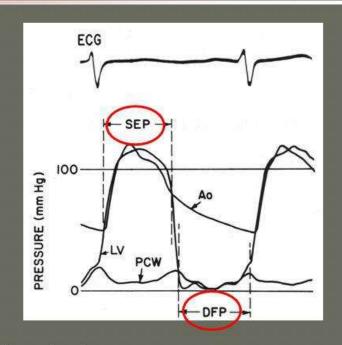
AVA 1.56 cm2

Case 3

- F/90 referred for ?TAVI for severe AS
 - LVEF : 60%
 - AV mean gradient : 39 mmHg
 - LVOT TVI: 91 cm
 - AV TVI: 138 cm
 - LVOT diameter: 1.1 cm
 - AVA: 0.63 cm2 (by continuity equation)

Valve Stenoses Gorlin Formula Derivation

$$A = \frac{\text{Flow}}{\text{C} \cdot 44.3 \, \sqrt{\text{h}}}$$

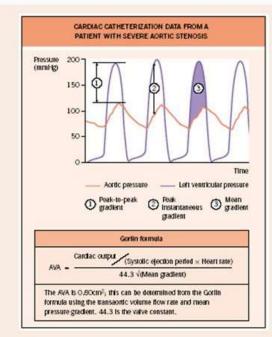

Flow has to be corrected for the time during which there is cardiac output across the valve.

Aortic Systolic Flow Pulmonic (SEP)

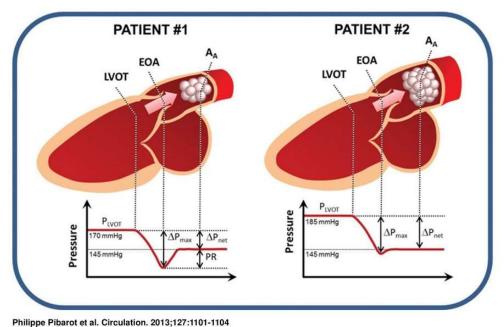
Tricuspid Diastolic Flow

Gorlin Formula:

$$A = \frac{CO / (DFP \text{ or SEP}) \cdot HR}{C \cdot 44.3 \sqrt{\Delta P}}$$

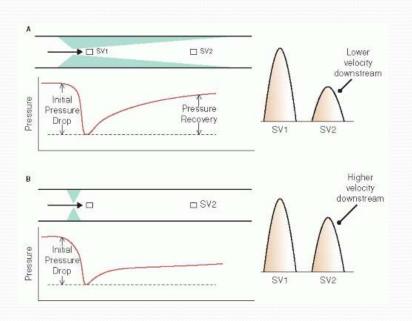

Constant:

Aortic, Tricuspid, Pulmonic: C = 1.0


Mitral: C = 0.85

Cath vs. Echo gradient

- The peak-to-peak gradient is the difference between the peak left ventricular pressure and the peak aortic pressure.
- The peak instantaneous gradient corresponds to the maximum gradient measured by Doppler echocardiographic methods.
- The mean gradient is average transaortic gradient during the systolic ejection period



Pressure recovery phenomenon

- Kinetic energy -> Potential or static energy in ascending aorta after passing through the stenosis
- Usually negligible in large aorta

Pressure recovery phenomenon (Pitfall 10)

- Smaller sinotubular junction or aorta (< 3cm), greater pressure recovery, higher pressure at AsAo
- Greater discrepancy between Cath vs. Echo net gradient (Cath < Echo)

Classification of progression of Valvular Heart Diseases

Table 3. Stages of Progression of VHD

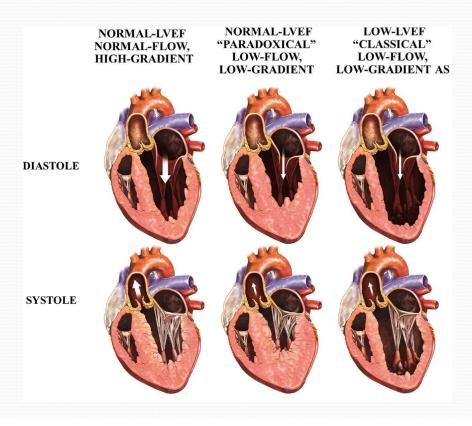
Stage Definition		Description			
A	At risk	Patients with risk factors for development of VHD			
В	Progressive	Patients with progressive VHD (mild-to-moderate severity and asymptomatic)			
С	Asymptomatic severe	Asymptomatic patients who have the criteria for severe VHD: C1: Asymptomatic patients with severe VHD in whom the left or right ventricle remains compensated C2: Asymptomatic patients with severe VHD, with decompensation of the left or right ventricle			
D	Symptomatic severe	Patients who have developed symptoms as a result of VHD			

VHD indicates valvular heart disease.

J Am Coll Cardiol. March 2014

Stages of Aortic Stenosis

Stage	Definition	Valve Anatomy	Valve Hemodynamics	Hemodynamic Consequences	Symptoms
A	At risk of AS	 Bicuspid aortic valve (or other congenital valve anomaly) Aortic valve sclerosis 	• Aortic V _{max} <2 m/s	• None	• None
В	Progressive AS	 Mild-to-moderate leaflet calcification of a bicuspid or trileaflet valve with some reduction in systolic motion or Rheumatic valve changes with commissural fusion 	 Mild AS: Aortic V_{max} 2.0–2.9 m/s or mean	 Early LV diastolic dysfunction may be present Normal LVEF 	• None

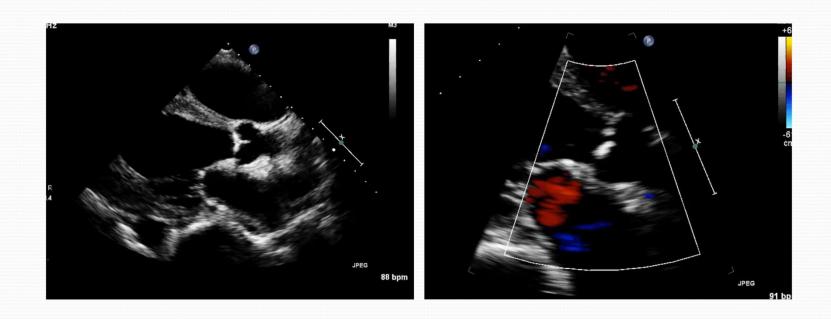

Stage	Definition	Valve Anatomy	Valve	Hemodynamic	Symptoms
			Hemodynamics	Consequences	
C - Asy	mptomatic sever	re AS			
C1	Asymptomatic severe AS	Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically is ≤1 cm² (or AVAi ≤0.6 cm²/m²) Very severe AS is an aortic V_{max} ≥5 m/s, or mean ΔP ≥60 mm Hg 	 LV diastolic dysfunction Mild LV hypertrophy Normal LVEF 	None— exercise testing is reasonable to confirm symptom status
C2	Asymptomatic severe AS with LV dysfunction	 Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening 	 Aortic V_{max} ≥4 m/s or mean ∆P ≥40 mm Hg AVA typically is ≤1 cm² (or AVAi ≤0.6 cm²/m²) 	• LVEF <50%	• None

Stage	Definition	Valve Anatomy	Valve Hemodynamics	Hemodynamic Consequences	Symptoms			
D - Sy	D - Symptomatic severe AS							
D1	Symptomatic severe high- gradient AS	Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening	• AVA typically is ≤1 cm² (or AVAi ≤0.6 cm²/m²), but may be larger with mixed AS/AR	 LV diastolic dysfunction LV hypertrophy Pulmonary hypertension may be present 	 Exertional dyspnea or decreased exercise tolerance Exertional angina Exertional syncope or presyncope 			
D2	Symptomatic severe low- flow/low- gradient AS with reduced LVEF	Severe leaflet calcification with severely reduced leaflet motion	 AVA ≤1 cm² with resting aortic V_{max} <4 m/s or mean ΔP <40 mm Hg Dobutamine stress echo shows AVA ≤1 cm² with V_{max} ≥4 m/s at any flow rate 	LV diastolic dysfunctionLV hypertrophyLVEF <50%	HF,Angina,Syncope or presyncope			

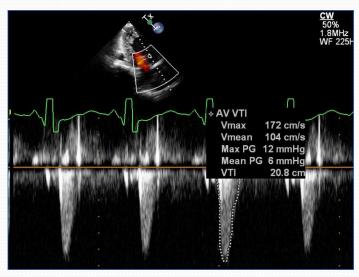
Stage	Definition	Valve Anatomy	Valve	Hemodynamic	Symptoms
			Hemodynamics	Consequences	
D - Sym	ptomatic sever	e AS			
D3	Symptomatic	 Severe leaflet 	 AVA ≤1 cm² with 	Increased LV	∙ HF,
	severe low-	calcification	aortic V _{max} <4 m/s,	relative wall	Angina,
	gradient AS	with severely	or mean ∆P <40	thickness	 Syncope or
	with normal	reduced leaflet	mm Hg	 Small LV chamber 	presyncope
	LVEF or	motion	Indexed AVA ≤0.6	with low-stroke	
	paradoxical		cm ² /m ² and	volume.	
	low-flow		 Stroke volume 	 Restrictive diastolic 	
	severe AS		index <35 mL/m ²	filling	
			 Measured when 	• LVEF ≥50%	
			the patient is		
			normotensive		
			(systolic BP <140		
			mm Hg)		

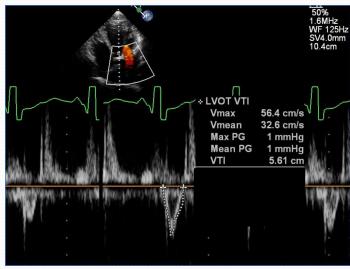
- The diagnosis of "severe aortic stenosis" can be confidently established when the data are congruent with each other
 - Normal flow, Normal EF, High gradient
- What if there are mismatch of information??
 - esp "severe AS by AVA" but low gradient, low EF
 - Could be due to "burning out of pure AS" or "concomitant obstructive CAD"

Low-Flow Low-Gradient (LFLG) AS

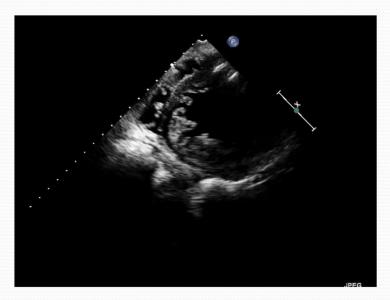

- Low flow Low gradient
 AS with Low EF
 (Paradoxical)
- Low flow Low gradient AS with Normal EF (Classical)
- Normal-Flow, Low-Gradient AS (?Measurement error)

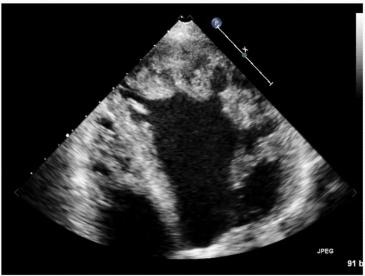
Classical LFLG AS

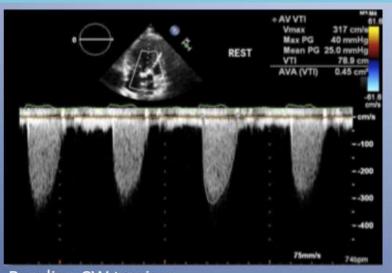

- Low Flow secondary to Low EF due to myocardial dysfunction
 - secondary to AS
 - secondary to other causes
 - primary myocardial disease
- "Psedo-severe" AS with impaired LVEF
 - DCMP(Primary Myocardial Dysfunction)
 - Ischemic Heart Disease
 - HT Heart Disease (After load mismatch)



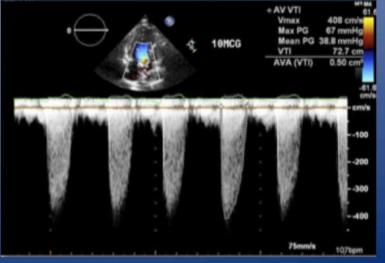
Referred for TAVI

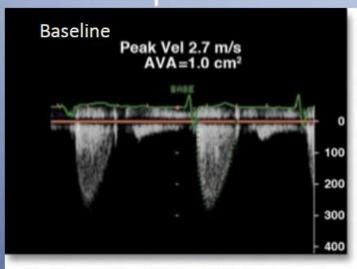


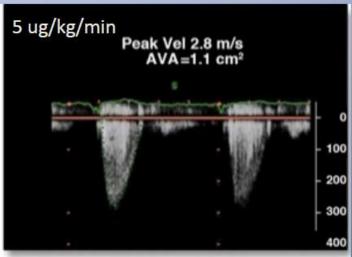

AV mean grad. 6mmHg, LVOT dia. 2.05 cm Calculated AVA 0.96 cm2


LV non-compaction, EF 10%

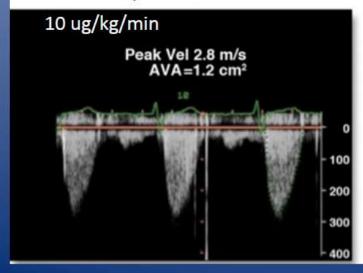
Dobutamine Stress Echo (DSE)

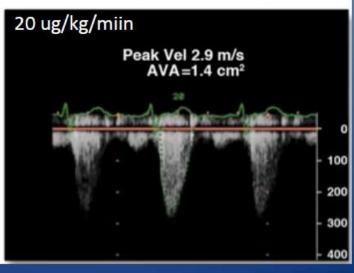

- Measure of the contractile response to dobutamine
- Assess for flow reserve, change in EOA and change in Gradient and velocity
- Low dose protocol up to 20 μg/kg/min
- Stress findings of true severe stenosis
 - AVA<1cm²
 - Jet velocity>4m/s
 - Mean gradient>40mm of Hg
 - Nishimura RA et al. Circulation 2002;106:809-13.
- Lack of contractile reserve-
 - Failure of LVEF to ↑ by 20% is a poor prognostic sign
 - Monin JL et al. Circulation 2003;108:319-24.

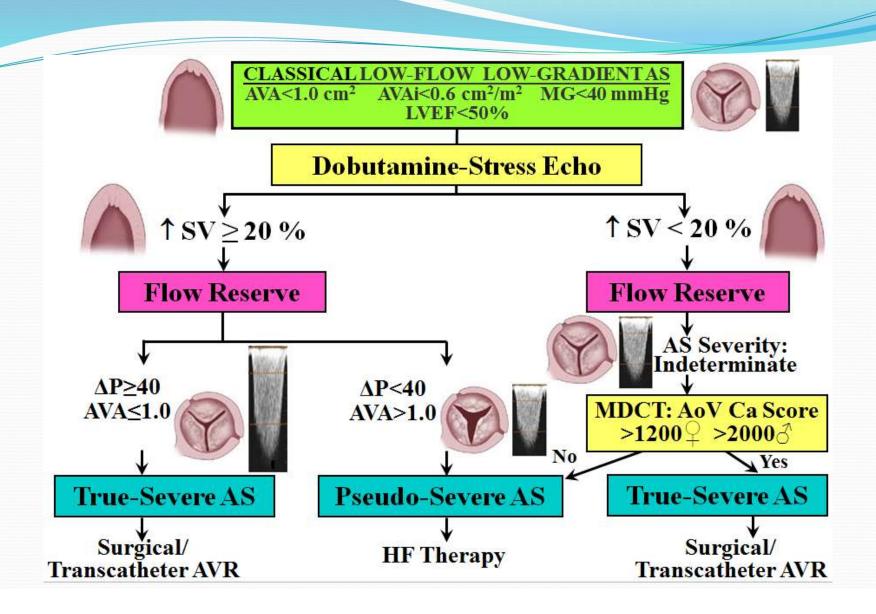

Dobutamine stress ECHO in patient with LGSAS


Baseline CW tracing: Peak velocity 3.2 m/s Mean grad 25 mmHg AVA 0.45 cm²

> CW 10ug/kg/min dobutamine Peak velocity 4.1 m/s Mean grad 39 mmHg AVA 0.5 cm²




DSE in a patient with Pseudo-severe AS


Peak velocity stable, AVA increased, contractile reserve +, absence of severe AS

Lack of Contractile Reserve

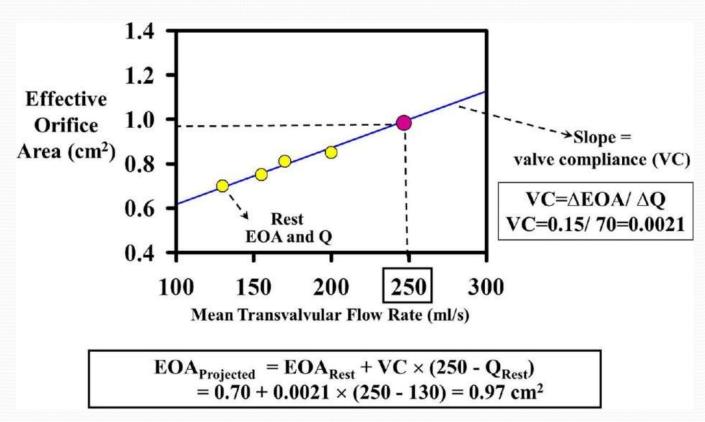
- Defined by increase in SV <20% during DSE or catheterization
- Higher operative mortality (22% to 33%) than those with flow reserve (5% to 8%).
- Higher prevalence of multivessel CAD
- Yet, should NOT preclude consideration of AV surgery in symptomatic subjects with severe AS

Valvular Heart Disease

Projected Valve Area at Normal Flow Rate Improves the Assessment of Stenosis Severity in Patients With Low-Flow, Low-Gradient Aortic Stenosis

The Multicenter TOPAS (Truly or Pseudo-Severe Aortic Stenosis) Study

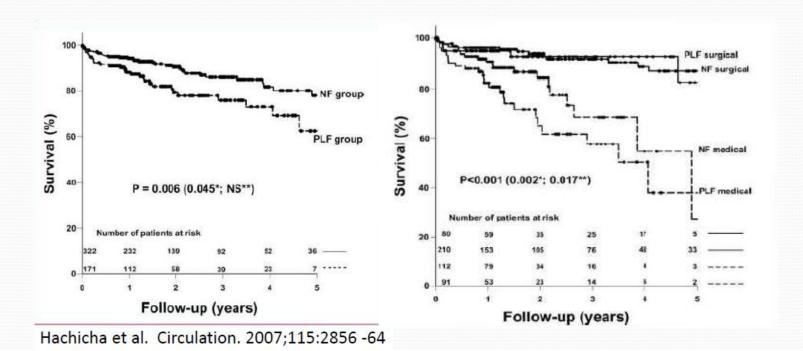
Claudia Blais, MSc; Ian G. Burwash, MD; Gerald Mundigler, MD; Jean G. Dumesnil, MD; Nicole Loho, MD; Florian Rader, MD; Helmut Baumgartner, MD; Rob S. Beanlands, MD; Boris Chayer, Eng; Lyes Kadem, Eng, PhD; Damien Garcia, Eng, PhD; Louis-Gilles Durand, Eng, PhD; Philippe Pibarot, DVM, PhD


Background—We sought to investigate the use of a new parameter, the projected effective orifice area (EOA_{proj}) at normal transvalvular flow rate (250 mL/s), to better differentiate between truly severe (TS) and pseudo-severe (PS) aortic stenosis (AS) during dobutamine stress echocardiography (DSE). Changes in various parameters of stenosis severity have been used to differentiate between TS and PS AS during DSE. However, the magnitude of these changes lacks standardization because they are dependent on the variable magnitude of the transvalvular flow change occurring during DSE.

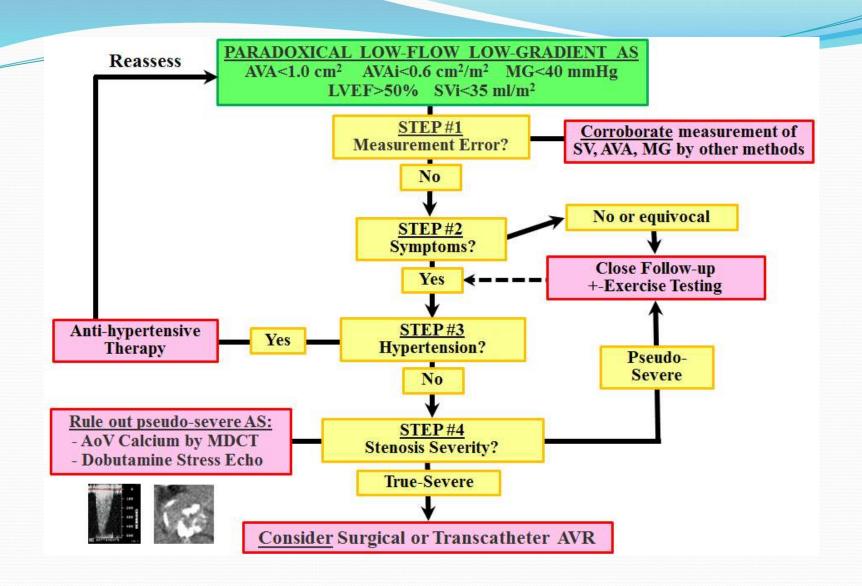
Methods and Results—The use of EOA_{proj} to differentiate TS from PS AS was investigated in an in vitro model and in 23 patients with low-flow AS (indexed EOA <0.6 cm²/m², left ventricular ejection fraction ≤40%) undergoing DSE and subsequent aortic valve replacement. For an individual valve, EOA was plotted against transvalvular flow (Q) at each dobutamine stage, and valve compliance (VC) was derived as the slope of the regression line fitted to the EOA versus Q plot; EOA_{proj} was calculated as EOA_{proj} =EOA_{rest}+VC×(250−Q_{rest}), where EOA_{rest} and Q_{rest} are the EOA and Q at rest. Classification between TS and PS was based on either response to flow increase (in vitro) or visual inspection at surgery (in vivo). EOA_{proj} was the most accurate parameter in differentiating between TS and PS both in vitro and in vivo. In vivo, 15 of 23 patients (65%) had TS and 8 of 23 (35%) had PS. The percentage of correct classification was 83% for EOA_{proj} and 91% for indexed EOA_{proj} compared with percentages of 61% to 74% for the other echocardiographic parameters usually used for this purpose.

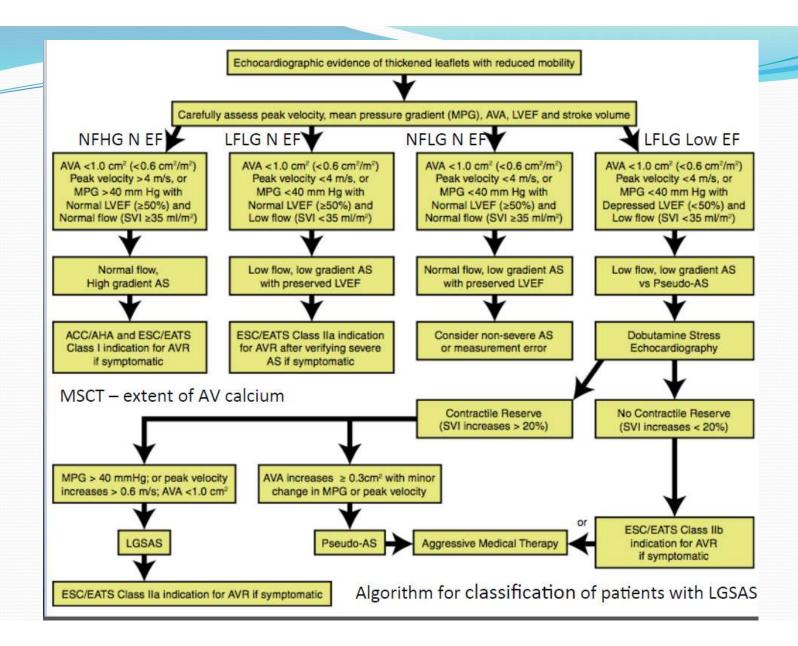
Conclusions—EOA_{proj} provides a standardized evaluation of AS severity with DSE and improves the diagnostic accuracy for distinguishing TS and PS AS in patients with low-flow, low-gradient AS. (Circulation. 2006;113:711-721.)

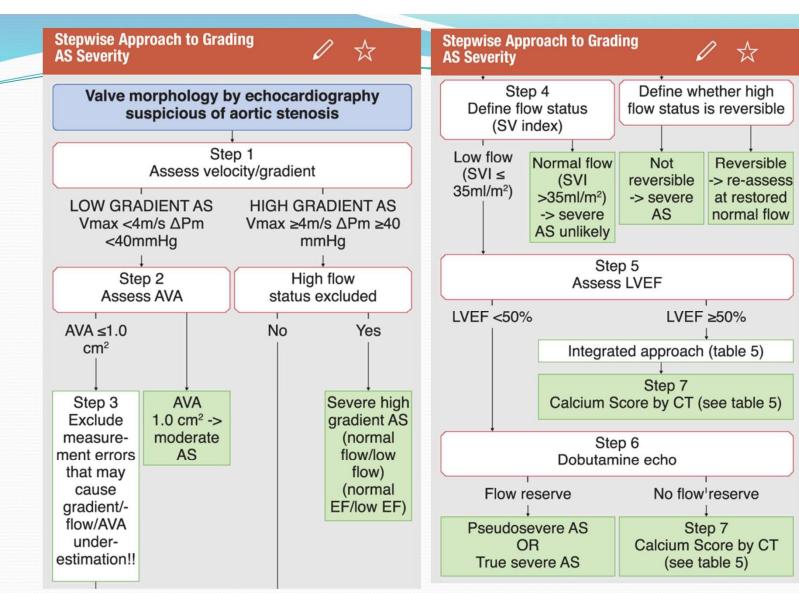
Key Words: aortic valve stenosis ■ echocardiography ■ hemodynamics ■ surgery ■ valves

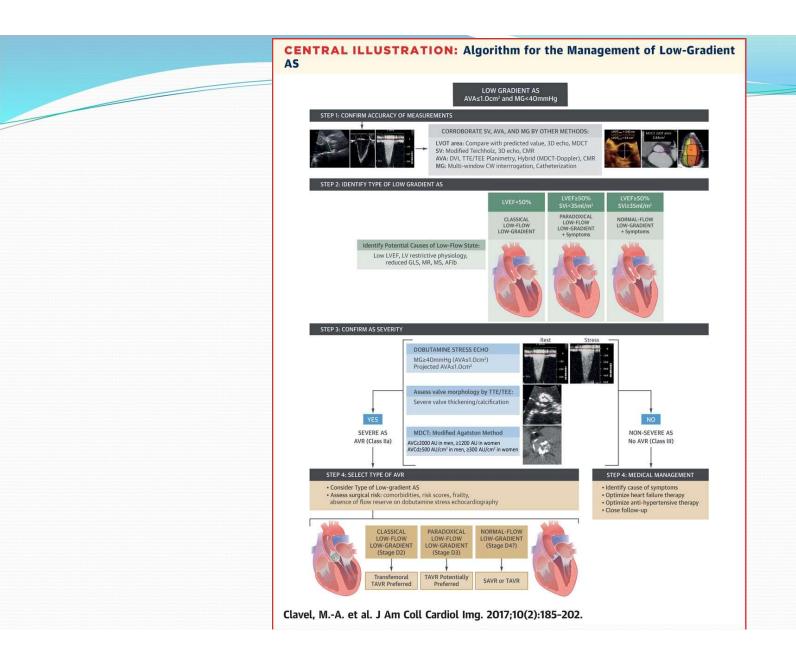

Projected EOA

Paradoxical LFLG AS - essentials

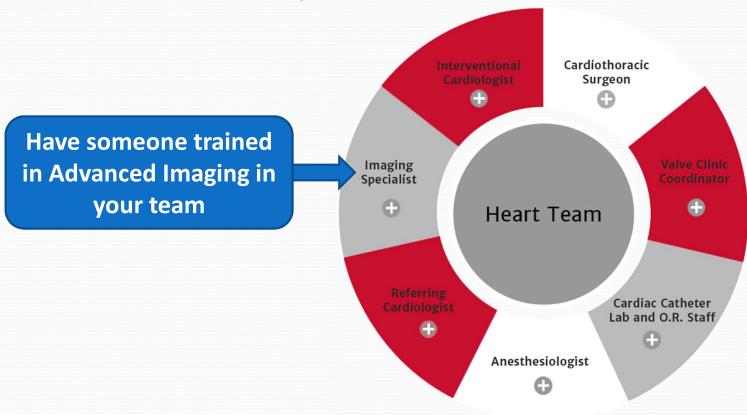

- (Would be another hour of talk!)
- Old, female, concomitant HT
- Pronounced LV concentric remodeling
- Small LV with restrictive filling
- Higher valvulo-arterial impedance (Zva)
- (Small body size index AVA may be helpful but not for obese patient)


Worse prognosis than NF severe AS if treated medically




Prognosis

- Worse than moderate AS (albeit contradictory reports)
- Worse than severe AS with high gradient group
- Lower overall 3-year survival (76% versus 86%)
 - (p < 0.006 in 512 patients By Hacicha et al.)
- Two-fold increase in mortality and an almost 50% lower referral rate
 (?undertreated) for AVR in the low gradient AS compared to the high gradient
 group (Barasch et al)


Typical characteristics of 3 different entities of AS

	Normal-Flow, High-Gradient	Preserved LVEF (Paradoxical), Low-Flow, Low-Gradient	Reduced LVEF, Low-Flow, Low-Gradient
Aortic valve area, cm 2	≤1.0	≤1.0	≤1.0
Indexed aortic valve area, cm ² /m ²	<0.6	<0.6	<0.6
Mean gradient, mm Hg	>40	<40	<40
Z _{va} , mm Hg·ml ⁻¹ ·m ²	>4.5	>4.5	>4.5
LV end-diastolic diameter, mm	45–55	<47	>50
Relative wall thickness	>0.43	>0.50	0.35-0.55
LVEF, %	>50	>50	<50
Mitral ring displacement, mm	5–15	<8	<8
Global longitudinal strain, %	14–20	<14	<14
Stroke volume index, ml/m ²	>35	<35	<35
Mean flow rate, ml/s	>200	<200	<200
Myocardial fibrosis	+	++	+++
CT valve calcium score, AU	>1,650	>1,650	>1,650
Plasma NT-proBNP, pg/ml	<1,500	>1,500	>1,500

Take Home Message

- Be meticulous in assessing AS severity (10 pitfalls)
- "Correct answer" derived from wrong steps is still invalid
- Integrated approach, additional imaging modalities
- Look at the patient, no just the numbers
- "Dichotomous" cutoff value in guideline apply with caution

Heart Team / Cardiac Team

